
CTU CAN FD
IP CORE

Datasheet

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Measurement

December 15, 2023

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

Document
Version

Date Change description

1.0 07-2015 Initial version describing release 1.0
2.0 09-2016 Added test framework description. Updated document to cover latest description

of CAN Core.
2.0.1 07-2018 Updated register map description, external references to generated maps.

Updated block diagrams. Updated test framework description. Updated
Synthesis table.

2.1 10-2018 Added Linux driver description
2.1.1 12-2018 Added Register map block diagram after re-implementation of registers via

Register map generator.
2.1.2 12-2018 Added CRC Wrapper. Extended CRC description.
2.1.3 01-2019 Added TIMESTAMP_LOW, TIMESTAMP_HIGH registers.
2.1.4 03-2019 Re-worked Prescaler. Removed 0x3 in bits 23:20 of address.
2.2 26-09-2019 Split functional descripion and register map from original document.

2.2.1 21-10-2019 Clarify TXT buffer behaviour when node goes bus-off.
2.2.2 31-10-2019 Clarify Bus-off behaviour aftet Start-up. Clarify that frame must be inserted to

TXT Buffer before sending.
2.2.3 18-11-2019 Clarify behaviour of Transmitter delay measurement. Add notes on RX frame

timestamping. Extend SSP position to 255.
2.2.4 13-12-2019 Clarify that only TEC above 255 will cause node to go Bus off.
2.2.5 30-4-2020 Add SETTING[PEX] and Protocol exception support.
2.2.6 28-10-2020 Add frame filters examples, add TBFBO and FDRF bits in SETTINGS registers,

minor refactoring.
2.2.7 05-11-2020 Add general overview and TX frame type description.
2.2.8 4-2-2021 Change license
2.3 4-2-2021 Added MODE[ROM] - Restricted operation mode.

2.3.1 23-2-2021 Add TXTB_INFO and mention generic number of TXT buffers.
2.3.2 9-4-2021 Add RETR_CTR register.
2.3.3 26-4-2021 Add chapter about memory testability.
2.3.4 17-05-2021 Add STATUfS[STCNT] and STATUS[STRGS] bits.
2.3.5 26-05-2021 Reduce maximal number of bits on the fly during secondary sampling to 4.
2.3.6 29-05-2021 Add detailed description of disabling node by SETTINGS[ENA].
2.3.7 11-06-2021 Add MODE[RXBAM] and COMMAND[RXRPMV] bits, describe RX buffer

modes.
2.3.8 18-06-2021 Add MODE[TTTM] bit to enable time-triggered transmission.
2.4 28-08-2021 Move to new release of CTU CAN FD. Bump document version accordingly.

2.4.1 1-4-2022 Add MODE[TXBBM], MODE[SAM], STATUS[RXPE], STATUS[TXPE],
COMMAND [CTPXE] and COMMAND[CRPXE]. Add FRAME_FORMAT_W

bits which allow flipping of CRC or Stuff count. Add section on parity mechanism
testing.

2.4.2 27-6-2022 SW commands on TXT Buffers in MODE[TXBBM] are automatically applied to
“backup” TXT Buffers. Add reset_buffer_rams and active_timestamp_bits

configuration parameters.
2.4.3 5-7-2022 Add SETTINGS[PCHKE] bit to control enable / disable of parity checking.
2.5 9-12-2023 Move to new release of CTU CAN FD. Bump document version accordingly.

i

Contents

Format 1

1 Introduction 2
1.1 General overview . 2
1.2 Features . 2
1.3 License . 2
1.4 Source code access . 3
1.5 Block diagram . 3
1.6 Implementation parameters . 4
1.7 Configuration parameters . 4

2 Functional description 5
2.1 Clock . 5
2.2 Reset . 5
2.3 Memory organization . 5
2.4 Time base . 5
2.5 Operating modes . 6
2.6 Initialization sequence . 7
2.7 De-initialization sequence . 7
2.8 CAN bus configuration . 7

2.8.1 Bit rate . 7
500 Kbit / 2 Mbit example . 8

2.8.2 Transmitter delay . 8
2.8.3 Secondary sampling point . 9
2.8.4 CAN FD support . 10
2.8.5 Protocol exception handling . 11
2.8.6 Implementation type . 11
2.8.7 Minimum bit time / Maximal bit rate . 12

2.9 CAN frame transmission . 12
2.9.1 TXT buffer selection . 13

ii

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

CONTENTS

2.9.2 Time triggered transmission mode . 13
2.9.3 Type of transmitted CAN frame . 15
2.9.4 Retransmitt limitation . 15
2.9.5 Abort . 16
2.9.6 TXT buffer - Bus-off behavior . 16
2.9.7 Sample code . 16

2.10 CAN frame reception . 17
2.10.1 Frame count . 17
2.10.2 RX buffer memory . 17
2.10.3 RX buffer status . 18
2.10.4 Overrun . 18
2.10.5 Flush . 18
2.10.6 Inconsistency protection . 18
2.10.7 Timestamping . 19
2.10.8 Frame filtering . 19

Bit filter . 20
Range filter . 20

2.10.9 Sample code 1 - Frame reception in automatic mode (32-bit access) 20
2.10.10 Sample code 2 - Frame reception in manual mode (8-bit access) 20
2.10.11 Sample code 3 - Bit filter configuration . 21

2.11 Fault confinement . 22
2.12 Interrupts . 22

2.12.1 Frame transmission and reception . 23
2.12.2 Fault confinement . 23
2.12.3 TXT buffers and RX buffer . 23
2.12.4 Error and Overload frame . 23
2.12.5 Other . 23

2.13 Fault Tolerance . 24
2.13.1 Parity protection on RX Buffer RAM . 24
2.13.2 Parity protection on TXT Buffer RAMs . 25
2.13.3 TXT Buffer Backup mode . 26
2.13.4 Parity protection testing . 28

2.14 Special modes . 29
2.14.1 Loopback mode . 29
2.14.2 Self test mode . 29
2.14.3 Acknowledge forbidden mode . 29
2.14.4 Self acknowledge mode . 29
2.14.5 Bus monitoring mode . 30
2.14.6 Restricted operation mode . 30

iii

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

CONTENTS

2.14.7 Test mode . 30
2.15 Corrupting transmitted CAN frames . 30

2.15.1 Flip a bit of CRC field . 31
2.15.2 Flip a bit of Stuff count field . 31
2.15.3 Replace DLC with arbitrary value . 31

2.16 Other features . 31
2.16.1 Error code capture . 31
2.16.2 Arbitration lost capture . 32
2.16.3 Traffic counters . 32
2.16.4 Debug register . 32
2.16.5 Memory testability . 32

3 CAN FD Core memory map 33
3.1 Control registers . 34

3.1.1 DEVICE_ID . 35
3.1.2 VERSION . 35
3.1.3 MODE . 36
3.1.4 SETTINGS . 37
3.1.5 STATUS . 38
3.1.6 COMMAND . 39
3.1.7 INT_STAT . 40
3.1.8 INT_ENA_SET . 41
3.1.9 INT_ENA_CLR . 42
3.1.10 INT_MASK_SET . 42
3.1.11 INT_MASK_CLR . 43
3.1.12 BTR . 43
3.1.13 BTR_FD . 44
3.1.14 EWL . 45
3.1.15 ERP . 45
3.1.16 FAULT_STATE . 45
3.1.17 REC . 46
3.1.18 TEC . 46
3.1.19 ERR_NORM . 47
3.1.20 ERR_FD . 47
3.1.21 CTR_PRES . 47
3.1.22 FILTER_A_MASK . 48
3.1.23 FILTER_A_VAL . 49
3.1.24 FILTER_B_MASK . 49
3.1.25 FILTER_B_VAL . 50

iv

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

CONTENTS

3.1.26 FILTER_C_MASK . 51
3.1.27 FILTER_C_VAL . 51
3.1.28 FILTER_RAN_LOW . 52
3.1.29 FILTER_RAN_HIGH . 53
3.1.30 FILTER_CONTROL . 53
3.1.31 FILTER_STATUS . 54
3.1.32 RX_MEM_INFO . 55
3.1.33 RX_POINTERS . 55
3.1.34 RX_STATUS . 56
3.1.35 RX_SETTINGS . 56
3.1.36 RX_DATA . 57
3.1.37 TX_STATUS . 57
3.1.38 TX_COMMAND . 58
3.1.39 TXTB_INFO . 59
3.1.40 TX_PRIORITY . 60
3.1.41 ERR_CAPT . 60
3.1.42 RETR_CTR . 61
3.1.43 ALC . 62
3.1.44 TS_INFO . 62
3.1.45 TRV_DELAY . 63
3.1.46 SSP_CFG . 63
3.1.47 RX_FR_CTR . 64
3.1.48 TX_FR_CTR . 64
3.1.49 DEBUG_REGISTER . 65
3.1.50 YOLO_REG . 66
3.1.51 TIMESTAMP_LOW . 67
3.1.52 TIMESTAMP_HIGH . 67

3.2 TXT Buffer 1 . 69
3.3 TXT Buffer 2 . 70
3.4 TXT Buffer 3 . 71
3.5 TXT Buffer 4 . 72
3.6 TXT Buffer 5 . 73
3.7 TXT Buffer 6 . 74
3.8 TXT Buffer 7 . 75
3.9 TXT Buffer 8 . 76
3.10 Test registers . 77

3.10.1 TST_CONTROL . 77
3.10.2 TST_DEST . 78
3.10.3 TST_WDATA . 78
3.10.4 TST_RDATA . 79

v

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

CONTENTS

4 CAN FD frame format 80
4.1 CAN FD Frame format . 81

4.1.1 FRAME_FORMAT_W . 81
4.1.2 IDENTIFIER_W . 82
4.1.3 TIMESTAMP_L_W . 83
4.1.4 TIMESTAMP_U_W . 84
4.1.5 DATA_1_4_W . 84
4.1.6 DATA_5_8_W . 85
4.1.7 DATA_9_12_W . 86
4.1.8 DATA_13_16_W . 86
4.1.9 DATA_17_20_W . 87
4.1.10 DATA_21_24_W . 88
4.1.11 DATA_25_28_W . 88
4.1.12 DATA_29_32_W . 89
4.1.13 DATA_33_36_W . 90
4.1.14 DATA_37_40_W . 90
4.1.15 DATA_41_44_W . 91
4.1.16 DATA_45_48_W . 92
4.1.17 DATA_49_52_W . 92
4.1.18 DATA_53_56_W . 93
4.1.19 DATA_57_60_W . 94
4.1.20 DATA_61_64_W . 94
4.1.21 FRAME_TEST_W . 95

vi

Format

Throughout this datasheet following notations are kept:

• Common text is written with this font.

• Memory registers are always described with capital letters e.g. REGISTER or REGISTER [BIT_FIELD] to represent
register or bit field within a register.

• States of modules are written in apostrophe like so: “TX Failed”.

Source code examples are written by this font

1

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

1. INTRODUCTION

1. Introduction

This document provides functional description of CTU CAN FD, programmers model and parameters of CTU CAN FD.
It is intended to be used as a reference for SW driver developers. Internal architecture of CTU CAN FD is described in
[1].

1.1 General overview

CTU CAN FD is soft IP-core written in VHDL with no vendor-specific libraries needed. It implements CAN FD protocol
as specified by ISO11898-1.

1.2 Features

• Compliant with ISO11898-1 2015

• RX buffer FIFO with 32 - 4096 words (1-204 CAN FD frames with 64 byte of data)

• 2-8 TXT buffers (1 CAN FD frame in each TXT buffer)

• 32 bit slave memory interface (APB, AHB, RAM-like interface)

• Support of ISO and non-ISO CAN FD protocol

• Timestamping and Time triggered transmission

• Interrupts

• Loopback mode, Bus monitoring mode, ACK forbidden mode, Self-test mode, Restricted operation mode

1.3 License

RTL and testbench of CTU CAN FD IP core are published under following license:

Permission is hereby granted, free of charge, to any person obtaining a copy of this VHDL component
and associated documentation files (the "Component"), to use, copy, modify, merge, publish, distribute the
Component for educational, research, evaluation, self-interest purposes. Using the Component for commercial
purposes is forbidden unless previously agreed with Copyright holder.
The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Component.

2

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

1. INTRODUCTION

THE COMPONENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHTHOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE COMPONENT OR THE USE OR OTHER DEALINGS IN THE COMPONENT.

Linux driver and low level driver are published under GPL v 2.0:

This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy of the
GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

1.4 Source code access

CTU CAN FD source code is available in CTU FEE GitLab repository at:
https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

1.5 Block diagram

CTU CAN FD

Memory
registers

Interrupt
manager

RX
buffer

TXT
buffers
TXT

buffers
TXT

buffers
TXT

buffers

Frame
filters

TX
Arbitrator

CAN
protocol
core

Prescaler

Bus
sampler

INTERRUPT

CAN_TX

CAN_RX

TX
Data

RX
Data

Bit
timingRX

frame

Filtered
RX frame

Selected
TX frame

TX
frames

RX
buffer
access

Memory
bus

TXT
buffers
access

Figure 1.1: CTU CAN FD block diagram

3

https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

1. INTRODUCTION

1.6 Implementation parameters

Parameter name Value Units
Minimum nominal time quanta 1 -
Minimum data time quanta 1 -
Information processing time 2 Minimum time

quanta
Input delay (tinput) 2 System clock

periods (see 2.1)
Nominal bit rate prescaler range (BTR[BRP] register) 1 - 255
Data bit rate prescaler range (BTR_FD[BRP_FD] register) 1 - 255
Minimal nominal bit time length 8 Time quanta
Minimal data bit time length 5 Time quanta

Table 1.1: Implementation parameters

1.7 Configuration parameters

CTU CAN FD can be used with different options when implemented on ASIC or FPGA. These parameters are then
readable by SW. Related parameters are described in 1.2.

Parameter name Value Description
rx_buffer_size 32 - 4096 Size of RX buffer (number of 32bit words it can store). SW can read

this value from RX_MEM_INFO[RX_BUFF_SIZE].
sup_filt_A true/false Filter A is / is not present. If present, FILTER_STATUS[SFA] = 1.
sup_filt_B true/false Filter B is / is not present. If present, FILTER_STATUS[SFB] = 1.
sup_filt_C true/false Filter C is / is not present. If present, FILTER_STATUS[SFC] = 1.
sup_range true/false Range fitler is / is not present. If present, FILTER_STATUS[SFR] = 1.
sup_traffic_ctrs true/false Traffic counters are / are not present. If present, STATUS[STCNT] =

1.
txt_buffer_count 2-8 Number of TXT buffers available. Can be read from TXTB_INFO

register.
sup_test_registers true/false Test registers for memory testability (Test Registers memory region)

are / are not present . If present, STATUS[STRCNT] = 1.
sup_parity true/false Add parity bits to each word of TXT Buffer and RX Buffer RAMs. If

Parity protection is present, STATUS[SPRT] = 1.
reset_buffer_rams true/false When true, TXT Buffer and RX Buffer RAMs are resettable by HW

reset.
active_timestamp_bitsinteger Number of active bits of CTU CAN FD timebase - 1.

Table 1.2: Configuration parameters

4

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2. Functional description

2.1 Clock

CTU CAN FD operates with single clock which is called System clock. Each other timing parameter is derived from
System clock. System clock frequency depends on system which is integrating CTU CAN FD (it corresponds to frequency
of clock signal of CTU CAN FD).

2.2 Reset

After power-up CTU CAN FD shall be reset either by HW reset (see [1]) or by Soft reset. Soft reset is executed by
writing MODE[RST] = 1. If HW reset was issued to CTU CAN FD , it shall not be accessed for two clock periods of
System clock. For example if CTU CAN FD System clock is 100 MHz, SW shall wait 20 ns after HW reset was released.
If Soft reset is issued, no waiting is required. Both, HW Reset and Soft reset have the same effect. By applying any
reset, CTU CAN FD is put to following state:

• CTU CAN FD is disabled, it is not communicating on CAN bus (bus-off state).

• All memory registers within CTU CAN FD contain reset value.

• Memories in CTU CAN FD (TXT buffer and RX buffer) are not reset.

2.3 Memory organization

CTU CAN FDs memory map is organized as little-endian (e.g. EWL register is at address 0x2C, ERP register at
address 0x2D, and FAULT_STATE register at address 0x2E). Memory within CTU CAN FD is 32-bit memory, but all
functionality of CTU CAN FD can be used by accessing the core by 8/16 bit accesses (with proper configuration, see
settings MODE[RXBAM] - RX Buffer Automatic Mode).

2.4 Time base

CTU CAN FD can have a time base available for Time triggered transmission or Timestamping of received frames.
Availability of such time base depends on integration of CTU CAN FD into a system. If such time base is available, its
immediate value can be read from TIMESTAMP_H and TIMESTAMP_L registers. Time base is up-counting unsigned
counter which measures flow of time within a system in which CTU CAN FD is integrated. Width of time base ranges
from 1 to 64 bits, and it is defined by a system integrating CTU CAN FD. Number of active bits of time base is available
for SW in TS_INFO register.

5

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.5 Operating modes

After reset, CTU CAN FD is disabled, it does not take part in communication on CAN bus (no transmission, reception,
monitoring). Before CTU CAN FD is enabled, it must be configured as is explained in 2.8. Once it was configured,
it can be enabled by writing SETTINGS[ENA] = 1. When SETTINGS[ENA] = 1 is set, CTU CAN FD starts bus
integration and joins CAN bus communication after receiving 11 consecutive recessive bits. When CTU CAN FD joins
CAN bus communication, it becomes error-active (during integration it was bus-off). At this moment CTU CAN FD
starts communicating on CAN bus. The moment when CTU CAN FD joined CAN bus communication can be determined
by FCS interrupt and subsequent probing of FAULT_STATE register (see 2.12). Basic operating modes of CTU CAN
FD are shown in Figure 2.1.

Disabled

Integrating

Communicating
(Error active)

Waiting for
Reintegration

(Bus off)

Reintegrating

SETTINGS[ENA]=1
SETTINGS[ENA]=0

11 recessive
bits

TEC >256
or

REC > 256

Write 1 to
COMMAND[ERCRST]

129 x 11
recessive bits

Figure 2.1: Operating modes

When CTU CAN FD is error-active, it takes part in CAN bus communication. If CTU CAN FD becomes error-passive
and later bus-off, it stops communicating on CAN bus and waits before starting Reintegration until it receives Error
counter reset command (writing COMMAND[ERCRST] = 1). Upon this command, CTU CAN FD starts Reintegration.
Reintegration lasts until CTU CAN FD detects 129 sequences of 11 consecutive recessive bits. After 129 such sequences,
CTU CAN FD becomes error-active again.
CTU CAN FD can be at any time disabled by writing logic 0 to SETTINGS[ENA] register. In such case:

• CTU CAN FD immediately stops communication on CAN bus, and transmits only recessive bits.

• TEC/REC counters are reset to 0, CTU CAN FD becomes bus-off.

• All TXT buffers move to “Empty” state (see 2.7), content of TXT buffer RAMs remains valid (memories are not
reset).

• RX buffer is flushed (see 2.10.5).

It is recommended for CTU CAN FD not to be transmitting any frame when it is disabled by writing SETTINGS[ENA]
= 0, as this would result in transmission of error frame by other nodes on CAN bus. Therefore SW driver operating on
CTU CAN FD shall ensure that none of TXT buffers within CTU CAN FD is in “Ready”, “TX in progress” or “Abort in
progress” states (see 2.9).

6

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Note COMMAND[ERCRST] is “sticky”. This means that if CTU CAN FD is not yet bus-off, and this command is
issued, it will be remembered by CTU CAN FD and it will automatically start reintegration upon nearest transition
to bus-off. The reason is, that command can be issued in advance (during communication), and CTU CAN FD
will re-integrate as quickly as possible after becoming bus-off (without SW additional delay caused by interaction
with SW driver).

2.6 Initialization sequence

CTU CAN FD initialization sequence shall consist of following steps:

1. Reset (Either HW reset or Soft reset)

2. Configuration of CTU CAN FD:

(a) Configure interrupts as in 2.12
(b) Configure bit rate as in on this page
(c) Configure other features (filters, special modes, etc...)

3. Enable CTU CAN FD by writing SETTINGS[ENA] = 1.

4. Poll on FAULT_STATE register, or wait on Fault confinement state changed interrupt (INT_STAT[FCSI]). Inte-
gration is finished when FAULT_STATE[ERA]=1 (CTU CAN FD becomes error-active).

5. Initialization is finished, SW driver can send and receive frames.

2.7 De-initialization sequence

CTU CAN FD de-initialization sequence shall consist of following steps:

1. Ensures that no TXT buffer is in any of “Ready”, “TX in progress” or “Abort in progress” states. This can be
done by issuing Set abort command (see 2.9) to TXT buffers, and by not inserting next frames for transmission
into TXT Buffers.

2. Write SETTINGS[ENA]=0.

2.8 CAN bus configuration

2.8.1 Bit rate

Bit rate on CAN bus is derived from System clock (see 2.1). Basic unit of time on CAN bus is time quanta. Time
quanta is derived from System clock by dividing its frequency by bit rate prescaler. CTU CAN FD has separate prescaler
for nominal bit rate (BTR[BRP] register) and data bit rate (BTR_FD[BRP_FD] register). Bit rate on CTU CAN FD is
configured by specifying Prop_Seg, Phase_Seg1 and Phase_Seg2 durations (as shown in Figure 2.2). These are specified
in BTR (nominal bit rate) and BTR_FD (data bit rate) registers.

7

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Prop_Seg Phase_Seg1 Phase_Seg2

Sample point

BASE IDENTIFIER r1 ID
E

E
D

L

r0 B
RS ES

I

DLC

SO
F

DATA CRC CR
C

D
e

lim
ite

r

A
C

K
A

C
K

D

e
li

m
it

e
r

Sync_Seg

Time
Quanta BTR[PROP] BTR[PH1] BTR[PH2]

BTR[BRP]

Prop_Seg Phase_Seg1 Phase_Seg2

Sample point

Sync_Seg

Time
Quanta BTR_FD[PROP_FD] BTR_FD[PH1_FD]

BTR_FD[BRP_FD]

BTR_FD[PH2_FD]

System
clock

Figure 2.2: Bit time

500 Kbit / 2 Mbit example

Common configuration of bit rate on CAN bus within automotive industry is 500 Kbit in nominal bit rate and 2 Mbit in
data bit rate. Following snippet shows example configuration assuming 100 MHz System clock frequency with sample
point in 80% of bit:

#define CTU_CAN_FD_BASE 0x12000000
#define BTR_ADDR CTU_CAN_FD_BASE+0x24
#define BTR_FD_ADDR CTU_CAN_FD_BASE+0x28

uint32 btr;
btr = (4 << 19); // Time Quanta: 4
btr |= 29; // Prop: 29
btr |= (10 << 7); // Phase 1: 10
btr |= (10 << 13); // Phase 2: 10
btr |= (3 << 27); // SJW: 3
can_write_32(BTR_ADDR, btr); // (29+10+10+1)*4=200*10ns=2us=500Kbit

uint32 btr_fd;
btr_fd = (1 << 19); // Time Quanta: 1
btr_fd |= 29; // Prop: 29
btr_fd |= (10 << 7); // Phase 1: 10
btr_fd |= (10 << 13); // Phase 2: 10
btr_fd |= (3 << 27); // SJW: 3
can_write_32(BTR_FD_ADDR, btr_fd); // (29+10+10+1)*1=50*10ns=0.5us=2Mbit

2.8.2 Transmitter delay

Transmitter delay is propagation delay of signal transmited by CTU CAN FD on CAN_TX output back to CAN_RX input
as is visualized in Figure 2.3. This delay involves propagation of signal to physical layer transceiver, delay of transceiver
itself, and delay from transceiver to CAN_RX input of CTU CAN FD. CTU CAN FD measures its own transmitter delay
when it transmitts CAN FD frame (regardles of the fact if bit rate is switched in the frame) on recessive to dominant

8

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

edge between FDF (EDL) and r0 bits as is shown in Figure 2.4. Transmitter delay is readable after its measurement from
TRV_DELAY register. Transmitter delay is measured in periods of System clock.

CTU CAN FD

CAN_RX

CAN_TX

CAN physical layer
transceiver

CAN_H

CAN_L

Transmitter delay
CAN
Bus

Figure 2.3: Transmitter delay

Measurement

System
clock

CAN_RX

CAN_TX FDF/EDL r0 BRS ESI

TRV_DELAY

Start Stop

DLC

Transmitter delay

Figure 2.4: Transmitter delay measurement

Note Measured transmitter delay includes input delay of CTU CAN FD (which is 2 clock periods of System clock).
Therefore measured transmitter delay will be always higher by two than actual delay from CAN_TX to CAN_RX
(e.g. if signal propagation from CAN_TX to CAN_RX takes 110 ns (11 System clock periods at 100 MHz),
measured transmitter delay will be 13).

Note Transmitter delay measurement is saturated to 127 System clock periods. If delay between CAN_TX and CAN_RX
is longer, only 127 will be measured. When System clock frequency is 100 MHz, this gives 1,27 us of maximal
measurable transmitter delay which is more than most CAN transceivers need.

2.8.3 Secondary sampling point

Secondary sampling point can be used by CTU CAN FD during data bit rate to detect bit errors. Its position is configured
as delay from start of bit time (Sync_Seg) in multiples of System clock (not time quanta!). Secondary sampling point
position can be fixed (SSP_CFG[SSP_OFFSET] only), derived from Transmitter delay (SSP_CFG[SSP_OFFSET] +
TRV_DELAY), or it can be disabled (No SSP) as is shown in Figure 2.5. When Secondary sampling point is disabled,
regular sampling point as configured by BRP_FD register is used by CTU CAN FD when transmitting in data bit rate.

Note Secondary sampling point offset (SSP_CFG[SSP_OFFSET]) is configurable between 0 - 255. Internal range of
secondary sampling point position is also 0 - 255. If due to some reason secondary sampling point position would
be more than 255 clock cycles from start of bit (e.g. due to large measured Transmitter delay) it is saturated to
255.

9

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Sampling Point

Start of bit

SSP_CFG[SSP_OFFSET]

+
TRV_DELAY

Secondary
sampling

point

SSP_CFG[SSP_SRC] = SSP_SRC_NO_SSP

255

SSP_CFG[SSP_SRC] =
SSP_SRC_OFFSET

Figure 2.5: Secondary sampling point

Time

Bit-rate Nominal

CAN frame

Sample
point

BRS

SSP 1 SSP 2

ESI DLC[3]

SSP
Offset

Data Bit
Time length

SSP 3

DLC[2]

Data Bit
Time length

Data

Start of
bit

Figure 2.6: Secondary sampling point 2

Note Since CTU CAN FD input delay is 2 System clock periods (minimum time quanta), position of Secondary sampling
point shall be configured to at least 2 to compensate its own input delay (if SSP_CFG[SSP_OFFSET] < 3 and
SSP_CFG[SSP_SRC] = SSP_SRC_OFFSET], it is impossible to transmitt CAN FD frames without detecting bit
error on CTU CAN FDs own transmitted frame).

Note CTU CAN FD can handle at most 4 bits on flight between CAN_TX and CAN_RX pins when using secondary
sampling point. E.g. if System clock = 100 MHz and Data bit rate = 5 Mbit/s, then one data bit time = 20 System
clock periods. Then, latest possible position of Secondary sampling point is 20 * 4 = 80 System clock periods.
This limitation applies on final position of secondary sampling point (with SSP_CFG[SSP_OFFSET]/TRV_DELAY
included). User shall not configure secondary sample point position later than 4 data bit times.

2.8.4 CAN FD support

CTU CAN FD supports both ISO and non-ISO versions of CAN FD protocol. When ISO protocol version is chosen, CTU
CAN FD is conformant to ISO11898-1 2015. When NON ISO version is chosen, CTU CAN FD is conformant to CAN FD
specification 1.0. Selection between these two versions is done via SETTINGS[NISOFD] register. SETTINGS[NISOFD]
shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

10

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.8.5 Protocol exception handling

CTU CAN FD supports Protocol exception detection. Protocol exception is enabled by MODE[PEX] = 1. MODE[PEX]
shall be changed only when CTU CAN FD is disabled (SETTINGS[ENA]=0). Protocol exception behavior is different
for various CAN implementation types (see 2.1). If MODE[PEX] = 1 and CTU CAN FD detects Protocol exception, it
enters bus integration state and it waits for 11 consecutive recessive bits to be monitored on CAN_RX signal. REC/TEC
counters are not changed upon Protocol exception, nor is Fault confinement state of CTU CAN FD. When Protocol
exception occurs, STATUS[PEXS] flag is set. STATUS[PEXS] can be cleared by writing COMMAND[CPEXS] = 1. If
MODE[PEX] = 0 and conditions for Protocol exception are valid, CTU CAN FD transmits error frame instead.

2.8.6 Implementation type

ISO11898-1 2015 defines three implementation types of CAN protocol: Classical CAN, CAN FD tolerant and CAN FD
enabled. CTU CAN FD supports all three implementation types, Compliance to each implementation type can be changed
via MODE[FDE] and SETTINGS[PEX] bits. Both of these bits shall be modified only when CTU CAN FD is disabled
(SETTINGS[ENA] = 0).

Implementation
type

MODE[FDE] SETTING
[PEX]

Behavior

Classical CAN 0 0 When CTU CAN FD detects recessive FDF bit (bit after IDE
in Base frame, bit after RTR/r1 in Extended frame), it
responds with error frame.

CAN FD tolerant 0 1 When CTU CAN FD detects recessive FDF bit, it detects
Protocol exception and enters bus integration state.

CAN FD enabled 1 0 CTU CAN FD is able to receive / transmit CAN FD frames.
When CTU CAN FD detects recessive value on position of
“res” bit (one bit after FDF bit), it responds with error frame.

CAN FD enabled -
with protocol
exception

1 1 CTU CAN FD is able to receive / transmit CAN FD frames.
When CTU CAN FD detects recessive value on position of
“res” bit (one bit after FDF bit), it detects Protocol exception
and enters bus integration state. This configuration tolerates
future extensions of CAN FD protocol (e.g. CAN XL).

Table 2.1: CAN implementation type

Note When CTU CAN FD is configured as Classical CAN / CAN FD tolerant node (MODE[FDE] = 0), and user
attempts to send CAN FD frame (FRAME_FORMAT_W[FDF_BIT] = 1 in TXT buffer), frame type in TXT
buffer will be ignored and CAN 2.0 frame will be sent.

Note When CTU CAN FD is configured as Classical CAN / CAN FD tolerant node, SETTINGS[NISOFD] register has
no effect.

Note According to 10.9.10 of ISO11898-1 2015, CAN FD Enabled implementation shall not be set to a mode where
it behaves as CAN FD tolerant implementation. It is therefore users responsibility to use this option only for
evaluation / debugging purposes!

Note According original CAN 2.0 specification, R0 and R1 bits of any value shall be accepted by receivers, however
ISO119898-1 2015 states (Table A.1) that Error frames shall be sent by Classical CAN implementation upon such
event. This inconsisency in CAN specifications is resolved to meet ISO11898-1 2015.

11

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.8.7 Minimum bit time / Maximal bit rate

System clock period is equal to minimal time quanta, therefore it affects minimum bit rate achievable on CAN bus. CTU
CAN FD has following limitations:

• Phase_Seg2 >= 2 minimal time quanta. This is valid for both nominal and data bit rate.

• Sync_Seg + Prop_Seg + Phase_Seg1 > 2 minimal time quanta. This is valid for both nominal and data bit rate.

With these conditions, it is possible to reach bit lenght of 5 time quanta. Note that for nominal bit rate this is possible,
however, at least 8 time quantas per bit time are recommended (see 1.1). For data bit rate, 5 time quantas per bit time
can be used.
As an example, when nominal bit rate is 250 Kbit/s, data bit rate is 1 Mbit/s, minimal possible System clock frequency
is 5 MHz. Note that this is absolute maximum and gives very little margin in sample point position. Therefore it is
recommended to use at least 10 MHz System clock for these bit rates.

2.9 CAN frame transmission

CAN frames are transmitted by CTU CAN FD from TXT buffers. CTU CAN FD contains 2-8 TXT buffers (number of
TXT buffers is selected at synthesis time). Number of TXT buffers present can be read from TXTB_INFO register. If
“N” buffers are present, then its always buffers with indices 1 - “N”. Each TXT buffer can be in one of states as described
in Figure 2.7. State of each TXT buffer can be read from TX_STATUS register. SW can control TXT buffer state via
TX_COMMAND register, and issue three types of commands:

Set ready requests TXT buffer to move to “Ready” state.

Set abort requests TXT buffer to move to “Aborted” or “Abort in progress” state.

Set empty requests TXT buffer to move to “Empty” state.

Each TXT buffer stores single CAN frame. Whole 64 byte CAN FD frame can fit within single TXT buffer. TXT buffer
is write only (CAN frame can’t be read back), and is accessible only when TXT buffer is in “Empty”, “TX OK”, “TX
failed” or “Aborted” states. CAN frame is stored to TXT buffers via TXT Buffer 1 - TXT Buffer 8 memory regions
described in Section 3. T
After SW driver stores CAN frame to a TXT buffer, it issues Set ready command to this TXT buffer to request
transmission of stored CAN frame. TXT buffer moves to “Ready” state, and CTU CAN FD can transmit frame from this
TXT buffer. When CTU CAN FD starts transmission from this TXT buffer, it moves to “TX in progress” state. CTU
CAN FD starts transmission from TXT buffer which is in “Ready” state if it samples dominant bit during third bit of
intermission (SOF bit is skipped in this case), or as soon as bus is idle. Note that in Time triggered transmission mode,
the behavior differs (see 2.9.2).
When CTU CAN FD is error-passive and it was transmitter of previous frame, it suspend consecutive transmission for 8
bit times. When CTU CAN FD transmitts CAN frame succesfully (no arbitration lost, no error frame), TXT buffer moves
to “TX OK” state. If an error frame occurs or arbitration is lost, TXT buffer moves to “Ready” state and transmission
is attempted again in nearest intermission or bus idle.

Note When CTU CAN FD operates in Bus monitoring mode (MODE[BMM] = 1) or Restricted operation mode
(MODE[ROM] = 1) it always ends up in “TX failed” state when Set ready command is issued, without any
attempt to transmit the frame.

12

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Set abort *

Transmission
successful

Retransmitt
limit reched

Set ready

Empty

TX OK

Aborted

TX failed

Transmission
starts

Transmission
unsucessfull

Set abort

Set ready

Set empty

Ready

Transmission
unsucessfullAbort In

progress

Transmission result

Command

Accessible
for SW

Unacessible
for SW

Legend:

TX in
progress

Parity
ErrorParity Error

Parity
Error

* TXT BUFFER BECOMES “ABORTED” ALSO IF IT IS “BACKUP” BUFFER AND

 TRANSMISSION FROM “ORIGINAL” TXT BUFFER WAS SUCCESSFUL. SEE TXT BUFFER

 BACKUP MODE.

Figure 2.7: TXT buffer states

2.9.1 TXT buffer selection

If there are multiple TXT buffers in “Ready” state, CTU CAN FD selects highest priority TXT buffer in “Ready” state
and transmitts CAN frame from this TXT buffer. Priority of TXT buffers is configured in TX_PRIORITY register. If
two TXT buffers have equal priority, TXT buffer with lower index has precedence. The overall flow of transmission is
shown in Figure 2.8.

Note Higher value of TX_PRIORITY[TX*P] means TXT Buffer * has higher priority (e.g. if TX_PRIORITY[TX1P] =
2 and TX_PRIORITY[TX2P]=5, then TXT Buffer 2 has priority 5, and TXT Buffer 1 has priority 2. When both
TXT Buffers are in ready state, CTU CAN FD will pick TXT Buffer 2 before TXT Buffer 1).

Note Priority of “backup” TXT Buffers when MODE[TXBBM] = 1 is not configurable by a TX_PRIORITY[TX*P]
corresponding to them, but it is configured by a bit corresponding to “original” TXT Buffer. See 2.13.3.

2.9.2 Time triggered transmission mode

CTU CAN FD supports time-triggered transmission mode. This mode is enabled when MODE[TTTM] = 1. In this
mode, CTU CAN FD will attempt to transmitt frame from highest priority TXT buffer only when value of Time-Base
(see 2.4) reaches Timestamp stored in TIMESTAMP_L_W and TIMESTAMP_U_W words of this TXT Buffer. It is
assumed that Time base is up-counting unsigned counter. When Time base reaches value stored in TIMESTAMP_L_W,
TIMESTAMP_U_W, frame stored in TXT buffer is allowed for transmission (assuming that it is in highest priority TXT
buffer in “Ready” state), as is visualized in Figure 2.9. Note that this does not mean that CTU CAN FD will transmit
the frame immediately, it will still wait until bus is idle. If TXT buffer is in “Ready” state, and Time base counter did

13

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Pick highest priority TXT
Buffer in Ready state

MODE[TTTM]

1

Wait

Attempt to
transmit frame at
nearest bus-idle

0
Highest priority

TXT Buffer in
Ready state changes

Timebase = Timestamp
in TXT Buffer

Figure 2.8: TXT Buffer selection

Time

CAN bus
state

Idle

Empty

Time = Timestamp in
TXT buffer

Ready

SOF Arbitration

TXT buffer
state

TX in progress

CAN TX Set ready
command

Figure 2.9: Time triggered transmission

not reach moment of transmission yet, CTU CAN FD waits until this condition is satisfied. If during this time another
node on CAN bus starts transmitting a frame, CTU CAN FD becomes receiver of such frame.
If CAN frame shall be transmitted as soon as possible (no time triggered transmission), SW driver shall store 0x00000000
to TIMESTAMP_L_W, TIMESTAMP_U_W words. Note that time triggered transmission is always considered only
from highest priority TXT buffer in “Ready” state. At any moment TXT buffer priority is considered first before time
triggered transmission. The behavior of the TXT buffer priority and time triggered transmission is following:

• If TXT buffer A has higher priority than TXT buffer B, CTU CAN FD will pick frame from TXT buffer A even if
its time of transmission is higher (transmission should start later) than the one from TXT Buffer B.

• If priority of TXT buffers changes (and highest priority TXT buffer in “Ready” state changes), then CTU CAN FD
picks frame from new highest priority TXT buffer in “Ready” state. This is valid as long as frame from previously
selected TXT buffer is waiting for Time base to reach its time of transmission. When frame transmission already
starts, TXT buffer priority is not considered anymore (no frame swapping).

14

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.9.3 Type of transmitted CAN frame

Type of transmitted CAN frame by CTU CAN FD is determined by content of FRAME_FORMAT_W in TXT buffer,
and settings of CTU CAN FD as show in Figure 2.10.

Transmitting
frame

FRAME_FORMAT[FDF] = FD_CAN
Yes

Yes

No

MODE[FDE] = 1

Transmit CAN FD
frame

Transmit CAN 2.0
data frame

No
FRAME_FORMAT[RTR] = RTR_FRAME

No

Transmit CAN 2.0
remote frame

Yes

Figure 2.10: TX frame type

Note When FRAME_FORMAT_W[FDF] = FD_CAN and MODE[FDE] = 0, CTU CAN FD transmits CAN 2.0 frame.
If in such case TXT buffer contains CAN FD frame with more than 8 bytes of data payload, bytes 8 above 8-th
bit will not be sent.

Note When FRAME_FORMAT_W[RTR] = RTR_FRAME and FRAME_FORMAT_W[FDF] = FD_CAN, RTR flag is
ignored and CTU CAN FD transmits CAN FD data frame (there are no remote frames in CAN FD protocol).

2.9.4 Retransmitt limitation

CTU CAN FD can limit number of retransmission from a single TXT buffer. Retransmitt limitation is enabled when
SETTINGS[RTRLE] = 1. Number of retransmissions is configured in SETTINGS[RTRTH]. First attempt to transmitt
CAN frame does not count as retransmission. Possible configuration options are shown in Table 2.2.

SETTINGS
[RTRTH]

SETTINGS
[RTRLE]

Behaviour

- 0 Frame transmission is attempted without any limitation (until it is
succesfull or unit turns bus-off).

0 1 Frame transmission is attempted only once, there are no retransmission
attempts after first failed transmission (so called one shot mode).

1 - 15 1 Frame transmission is attempted SETTINGS[RTRTH] + 1 times (initial
transmission + SETTINGS[RTRTH] retransmissions).

Table 2.2: Retransmitt limitation configuration

If SETTINGS[RTRTH] consecutive retransmission are not succesfful (error frame or arbitration lost) from single TXT
buffer, this TXT buffer moves to “TX failed” state. If TXT buffer used for transmission changed between two transmissions
(e.g it was picked due to higher priority), internal counter of retransmissions is erased and new frame (from new TXT
buffer) has again SETTINGS[RTRTH]+1 transmission attempts. If CTU CAN FD returns to transmission from original
TXT buffer, it does not remember previous number of transmission attempts and again attempts to transmitt CAN frame
SETTINGS[RTRTH]+1 times. If TXT buffer which is currently used for transmission moves to “Aborted” state, internal
counter of retransmissions is also erased. If such TXT buffer moves to Ready state again, CTU CAN FD attempts to
transmitt it SETTINGS[RTRTH]+1 times. Current number of transmission attempts of a single frame is held in an
internal counter which is readable via RETR_CTR register.

15

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.9.5 Abort

If SW driver previously requested transmission of CAN frame by Set ready command, it can request abort of transmission
by Set abort command. If TXT buffer is still in “Ready” state when it receives Set abort command (transmission did
not start yet), it moves to “Aborted” state immediately. If TXT buffer is in “TX in progress” state (transmission has
already started), it moves to “Abort in progress” state. In such case, it will move to “Aborted” state upon nearest error
frame or arbitration lost. Note that when TXT buffer is in “Abort in progress” state, it can move to TX OK state if
current transmission succeeds, or to “TX failed state” if retransmitt limit was reached.

2.9.6 TXT buffer - Bus-off behavior

When CTU CAN FD becomes bus-off due to TEC > 255, TXT buffers can react to this event in two ways:

1. All TXT buffers which are in “Ready”, “TX in Progress” or “Abort in Progress” immediately go to “TX failed”
state. This option is enabled by setting SETTINGS[TBFBO] = 1, and it is default configuration of TXT buffers.

2. TXT buffer which was used for transmission at time when CTU CAN FD became bus-off, will behave as if any
other error frame was transmitted. This option is enabled by setting SETTINGS[TBFBO] = 0. If no “Set abort”
command was issued to this buffer, nor retransmitt limit was reached, the buffer will become “Ready”. When CTU
CAN FD finishes reintegration (see 2.5), transmission from this TXT buffer will begin as per regular TXT buffer
selection by priority. This option allows going bus-off and re-integrating without the need of SW interaction with
TXT buffers.

2.9.7 Sample code
#define CTU_CAN_FD_BASE 0x12000000
#define TX_COMMAND_ADDR (CTU_CAN_FD_BASE + 0x74)
#define TXT_BUFFER_1_BASE (CTU_CAN_FD_BASE + 0x100)

/* Insert CAN frame to TXT buffer 1 */
uint32_t frame_format_word = 0;
frame_format_word |= 4; // DLC = 4
frame_format_word |= (1 << 7); // CAN FD Frame
frame_format_word |= (1 << 9); // Switch bit-rate
can_write_32(TXT_BUFFER_1_BASE, frame_format_word); // Store frame format word

uint32_t id_word = (55 << 18); // Identifier: 55
can_write_32(TXT_BUFFER_1_BASE + 0x4, id_word); // Store identifier word
can_write_32(TXT_BUFFER_1_BASE + 0x8, 1000);
can_write_32(TXT_BUFFER_1_BASE + 0xC, 0); // Transmitt at time 1000
can_write_32(TXT_BUFFER_1_BASE + 0x10, 0xAABBCCDD); // Data: 0xAA 0xBB 0xCC 0xDD

/* Issue Set ready command */
uint32_t command = 0;
command |= 0x2; // Set Ready command
command |= (1 << 8); // Choose TXT Buffer 1
can_write_32(TX_COMMAND_ADDR, command); // Issue the command

16

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Note When CTU CAN FD is enabled by writing SETTINGS[ENA] = 1, it is still bus-off during integration to the CAN
bus. If during this time Set ready command is issued to TXT buffer, TXT buffer immediately moves to “Aborted”
state when SETTINGS[TBFBO] = 1. SW shall wait until node is Error active (either polling FAULT_STATE or
via FCS Interrupt) before issuing Set ready command to any TXT buffer.

Note TXT buffers are not initialized, nor reset. Therefore, before issuing Set ready command, SW shall fill according
TXT buffer with valid CAN frame for transmission.

Note CTU CAN FD transmitts only reactive Overload frames. There are no internal conditions of CTU CAN FD which
would cause transmission of Overload frame without detecting overload condition.

2.10 CAN frame reception

CTU CAN FD contains single RX buffer to which received CAN frames are stored. Size of RX buffer is multiple of 32-bit
words, and it can be read from RX_MEM_INFO register. RX buffer is organized like FIFO. CAN frame is stored to RX
buffer when it is received successfully on CAN bus (no error frames occurred). CAN frame is read by SW from RX buffer
by consecutive reads from RX_DATA register. Single read from RX_DATA register reads one word from RX buffer. RX
buffer can operate in one of two modes:

• Automatic mode - When RX_DATA register is read, read pointer of RX buffer FIFO is automatically incremented.
This mode shall be used only when RX_DATA is read by 32-bit accesses. Writes to COMMAND[RXRPMV] = 1
have no effect in this mode.

• Manual mode - When RX_DATA register is read, read pointer of RX buffer FIFO is NOT incremented. To increment
read pointer, SW shall write COMMAND[RXRPMV] = 1. This mode can be used when RX buffer is read via
8/16/32-bit accesses, since it allows reading single RX buffer memory word via 4x8 bit or 2x16 bit accesses.

Mode of RX buffer is configured by MODE[RXBAM] bit. CAN frame format within RX buffer is described in Section 3,
and it is visualized in Figure 2.11. CAN frame within RX buffer spans from 4 to 20 memory words. Its size is given as:

Size of RX frame in words = 4 + ceil(Data field lenght / 4)

2.10.1 Frame count

RX buffer contains counter of CAN frames within the buffer. This counter can be read from RX_STATUS[RXFRCE]
register. Counter is incremented when frame is stored to RX buffer and decremented when last word of CAN frame is
read from RX buffer.

2.10.2 RX buffer memory

RX buffer memory provides following status information:

• Number of free memory words, readable from RX_MEM_INFO[RX_MEM_FREE].

• Write pointer position, readable from RX_POINTERS[RX_WPP].

• Read pointer position, readable from RX_POINTERS[RX_RPP].

17

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

FRAME_FORMAT_W

IDENTIFIER_W

TIMESTAMP_L_W

TIMESTAMP_U_W

DATA _1_4_W

DATA_5_8_W

FRAME_FORMAT_W

TIMESTAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

FRAME_FORMAT_W

TIMETAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

DATA _1_4_W

...

DATA_61_64_W

... Write pointer

Read pointer

CAN FD Frame
(64 data bytes)

RTR frame

CAN 2.0 / FD frame
(8 data bytes)

Address 0

Address rx_buff_size - 1

...

Figure 2.11: RX buffer

2.10.3 RX buffer status

RX buffer with no stored CAN frames is empty. In such state RX_STATUS[RXE]=1. RX buffer which has all its memory
words occupied by CAN frames is full. In such state RX_STATUS[RXF]=1. Note that if RX buffer has e.g. 2 free
memory words it is not full, however even smallest CAN frame would not fit into the buffer.

2.10.4 Overrun

If during reception of CAN frame there is not enough free space in RX buffer to store currently received CAN frame,
Overrun occurs and this frame is droped (RX buffer FIFO has overflown). In this situation Overrun flag is set. Over-
run flag is sticky (it remains set until it is cleared) and can be read from STATUS[DOR]. Overrun flag is cleared by
COMMAND[CDO]=1.

2.10.5 Flush

RX buffer can be flushed by writing COMMAND[RRB]=1. When RX buffer is flushed, content of RX buffer is kept
(memory is not erased), but read and write pointers are set to 0 and frame counter is set to 0. RX buffer is as if no frame
was received to it yet. If this command is issued during CAN frame reception, currently received frame is also droped.

2.10.6 Inconsistency protection

Reading CAN frame from RX buffer involves multiple reads of RX_DATA register. Each read increments read pointer in-
side RX buffer (read operation with side effect). If an error occurs (e.g. bus error, ECC error) during read from RX_DATA
register, then read data can be lost (RX buffer increments read pointer, and SW driver can’t read the word again). As
consequence, SW driver and RX buffer can become inconsistent. SW driver can use RX_STATUS[RXMOF] to recover
from such state. When next read from RX_DATA register is about to return other word than FRAME_FORMAT_W
(RX buffer read pointer points to middle of frame), then RX_STATUS[RXMOF] = 1. If SW driver gets into inconsistent
state during readout of frame, it can repetitively read from RX_DATA until RX_STATUS[RX_MOF] = 0. When such
condition is detected, RX_DATA points to FRAME_FORMAT_W word of new frame, or RX buffer is empty (if the error
occured during readout of only frame in RX buffer).

18

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.10.7 Timestamping

When CTU CAN FD receives CAN frame, it stores its timestamp (it samples value of external Time Base) in TIMES-
TAMP_L_W, TIMESTAMP_U_W words within RX buffer. Timestamp of received frame can be sampled in sample
point of Start of Frame bit, or in 6th bit of End of Frame (moment when received CAN frame is considered valid according
to ISO11898-1 2015). The position where timestamp is sampled is configured by RX_SETTINGS[RTSOP].

2.10.8 Frame filtering

Received CAN frames are filtered by HW filters. There are two types of filters in CTU CAN FD: Bit filter and Range
filter. There are three instances of Bit filter (A,B,C) and one instance of Range filter. Received CAN frame is stored to
RX buffer if it passes at least one filter (logical OR betwen filter results). Frame filters are applied on received frame
identifier only if Acceptance filter mode is enabled (MODE[AFM] = 1). MODE[AFM] shall be modified only when CTU
CAN FD is disabled (SETTINGS[ENA] = 0). When Acceptance filter mode is disabled, filtering is not applied, and each
received CAN frame is stored to RX buffer.
Each filter can be selectively configured to accept only certain types of CAN frame types (CAN 2.0 frame / CAN FD
frame) and Identifier types (frame with Base identifier only, frame with Base + Extended identifier). Such configuration
is available in FILTER_CONTROL register. Each filter is disabled by setting all bits in FILTER_CONTROL register
belonging to this filter to 0. Frame filters operation is described in Figure 2.12.

Is it RTR frame?

Received
frame

Yes
SETTINGS[FDRF] = 1

No

MODE[ACF] = 1

Yes

Frame type?

No

CAN 2.0 CAN FD

FILTER_CONTROL[F*NB] = 1
OR

FILTER_CONTROL[F*NE] = 1

FILTER_CONTROL[F*FB] = 1
OR

FILTER_CONTROL[F*FE] = 1

Yes Yes

Identifier type?

Base Extended

FILTER_CONTROL[F*NB] = 1
OR

FILTER_CONTROL[F*FB] = 1

FILTER_CONTROL[F*BE] = 1
OR

FILTER_CONTROL[F*FE] = 1

Yes Yes

Filter type

Bit Range

FILTER_*_VALUE & FILTER_*_MASK
==

IDENTIFIER_W & FILTER_*_MASK

FILTER_RAN_LOW <= IDENTIFIER_W
&&

FILTER_RAN_HIGH >= IDENTIFIER_W

Yes Yes

Accept frame Drop frame

No

Yes

No

No

No

No

No

No

Figure 2.12: Frame filters operation (* stands for A/B/C/R based on filter type)

19

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Bit filter

Bit filter checks if received CAN frame identifier is equal to predefined identifier in FILTER_X_VALUE register (X=A,B,C
based on filter instance). Only bits given by filter mask in FILTER_X_MASK register are compared.

Note When using Bit filter to filter frames with Base identifiers only, set FILTER_X_MASK[17:0] = 0b000000000000000000.

Range filter

Range filter determines if received CAN frame identifier is within certain decimal range. Lower threshold of this decimal
range is given by FILTER_RAN_LOW and upper threshold is given by FILTER_RAN_HIGH.

Note When using Range filter to filter frames with Base identifiers only, set FILTER_RAN_LOW[17:0] = 0b000000000000000000
and FILTER_RAN_HIGH[17:0] = 0b111111111111111111.

2.10.9 Sample code 1 - Frame reception in automatic mode (32-bit access)
#define CTU_CAN_FD_BASE 0x12000000
#define RX_DATA_ADDR (CTU_CAN_FD_BASE + 0x6C)
#define RX_STATUS_ADDR (CTU_CAN_FD_BASE + 0x68)

/* Poll on RX Buffer until there is a frame in it */
uint32_t rx_status;
do {

rx_status = can_read_32(RX_STATUS_ADDR);
} while ((rx_status & 0x1) == 0)

/* Read frame from RX buffer */
uint8_t data[64];
uint32_t tmp;
uint32_t ffw = can_read_32(RX_DATA_ADDR);
uint32_t id = can_read_32(RX_DATA_ADDR);
uint32_t ts_l = can_read_32(RX_DATA_ADDR);
uint32_t ts_h = can_read_32(RX_DATA_ADDR);

uint32_t rwcnt = (ffw >> 11) & 0x1F;
for(int i = 0; i < rwcnt; i++){

tmp = can_read_32(RX_DATA_ADDR);
data[i*4] = tmp & 0xFF;
data[i*4+1] = (tmp >> 8) & 0xFF;
data[i*4+2] = (tmp >> 16) & 0xFF;
data[i*4+3] = (tmp >> 24) & 0xFF;

}

2.10.10 Sample code 2 - Frame reception in manual mode (8-bit access)
#define CTU_CAN_FD_BASE 0x12000000
#define RX_DATA_ADDR (CTU_CAN_FD_BASE + 0x6C)

20

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

#define RX_STATUS_ADDR (CTU_CAN_FD_BASE + 0x68)
#define COMMAND_ADDR (CTU_CAN_FD_BASE + 0xC)
#define MOVE_RX_BUF_READ_PTR() can_write_8(COMMAND_ADDR, 1 << 2)

/* Poll on RX Buffer until there is a frame in it */
uint8_t rx_status;
do {

rx_status = can_read_8(RX_STATUS_ADDR);
} while ((rx_status & 0x1) == 0)

/* Read frame format word and move to RX pointer */
uint8_t data[64];
uint16_t ffw = (uint16_t)can_read_8(RX_DATA_ADDR);
ffw |= (((uint16_t)can_read_8(RX_DATA_ADDR + 0x1)) << 8);
MOVE_RX_BUF_READ_PTR();

/* Read CAN identifier and move RX pointer up to first data word */
uint32_t id = (uint32_t)can_read_8(RX_DATA_ADDR);
id |= ((uint32_t)can_read_8(RX_DATA_ADDR + 0x1)) << 8;
id |= ((uint32_t)can_read_8(RX_DATA_ADDR + 0x2)) << 16;
id |= ((uint32_t)can_read_8(RX_DATA_ADDR + 0x3)) << 24;
for (int i = 0; i < 3; i++)

MOVE_RX_BUF_READ_PTR();

/* Read data bytes */
uint16_t rwcnt = (ffw >> 11) & 0x1F;
for(int i = 0; i < rwcnt; i++){

data[i*4] = can_read_8(RX_DATA_ADDR);
data[i*4+1] = can_read_8(RX_DATA_ADDR + 0x1);
data[i*4+2] = can_read_8(RX_DATA_ADDR + 0x2);
data[i*4+3] = can_read_8(RX_DATA_ADDR + 0x3);
MOVE_RX_BUF_READ_PTR();

}

2.10.11 Sample code 3 - Bit filter configuration
#define CTU_CAN_FD_BASE 0x12000000
#define FILTER_CONTROL_ADDR (CTU_CAN_FD_BASE + 0x5C)
#define FILTER_A_VAL_ADDR (CTU_CAN_FD_BASE + 0x40)
#define FILTER_A_MASK_ADDR (CTU_CAN_FD_BASE + 0x3C)

uint32_t filter_mask = 0xF << 18; // Compare 4 LSBs of Base ID
uint32_t filter_val = 0x2 << 18; // Must be equal to 0x2 (0010)

/* Configure filter A */
can_write_32(FILTER_A_VAL_ADDR, filter_val);
can_write_32(FILTER_A_MASK_ADDR, filter_mask);

21

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

/* Enable reception of CAN 2.0 and CAN FD frames with Base identifiers only */
uint32_t filter_control = 0x5; // FANB, FAFB
can_write_32(FILTER_CONTROL_ADDR, filter_control);

2.11 Fault confinement

Fault confinement state of CTU CAN FD is readable from FAULT_STATE register. Fault confinement state transition
diagram is displayed in Figure 2.13. Fault confinement counters are readable from REC and TEC registers. These counters
correspond to transmitt error counter and receive error counter as defined in ISO11898-1. CTU CAN FD additionally
contains counters distigushing between errors detected in nominal bit rate and data bit rate. Nominal bit rate error
counter is readable from ERR_NORM register and it is incremented by 1 for each error detected during nominal bit rate.
Data bit rate error counter is readable from ERR_FD register and it is incremented by 1 due to each error detected
during data bit rate.
All four counters (REC, TEC, ERR_NORM, ERR_FD) can be manipulated by SW. As this feature directly affects
compliance of CTU CAN FD to ISO11898-1, this is only allowed when MODE[TSTM] = 1 (in test mode). All counters
can be set from SW via CTR_PRES register. Thresholds for Error warning limit, and transition to error passive are given
in EWL and ERP registers. By default, EWL and ERP corresponds to ISO11898-1. In test mode (MODE[TSTM] = 1)
EWL and ERP registers are writable.

Error Active

TEC >= ERP
or

REC >= ERP

Error
Passive

Bus-off

TEC < ERP
and

REC < ERP

TEC > 255

Set Error
Active

Figure 2.13: Fault confinement

2.12 Interrupts

CTU CAN FD generates interrupts from various sources. Each interrupt source has three parameters:

• Interrupt mask - Set by INT_MASK_SET, cleared by INT_MASK_CLR.

• Interrupt enable - Set by INT_ENA_SET, cleared by INT_ENA_CLR.

• Interrupt status - Set by HW upon event occurence, cleared by writing to INT_STAT.

Relationship of interrupt parameters is shown in Figure 2.14. Interrupt status is set when a certain condition is met
within CTU CAN FD. In order for Interrupt status to be set, its corresponding bit of Interrupt mask must be 0 (interrupt
is unmasked). If Interrupt status is set, and corresponding interrupt is enabled Interrupt is generated. Interrupt status
can be read from CTU CAN FD via INT_STAT register. Note that when interrupt status is about to be set by HW at
the same moment as it is being cleared by writing to INT_STAT register, interrupt remains set (set has priority).

22

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Interrupt Event/Condition

Interrupt
Mask

Interrupt
Status

Interrupt
Enable

Set

Clear

Set

Clear

Set

Clear

Contribution to
Interrupt output

Figure 2.14: Interrupts

2.12.1 Frame transmission and reception

When CTU CAN FD transmitts CAN frame succesfully (no error frame until the end of EOF) TX interrupt is generted
(INT_STAT[TXI]). When CTU CAN FD receives CAN frame successfully (no error frame until one bit before the end of
EOF), RX interrupt is generated (INT_STAT[RXI]).

2.12.2 Fault confinement

When Transmitt error counter (TEC) or Receive error counter (REC) are reach value in EWL register, Error warning limit
interrupt is generated (INT_STAT[EWLI]). When Fault confinement state of CTU CAN FD changes Fault confinement
state interrupt is generated (INT_STAT[FCSI]). This bit is set upon any Fault confinement state change (even bus-off
to error-active).

2.12.3 TXT buffers and RX buffer

When Overrun occurs on RX buffer, Data overrun interrupt is generated (INT_STAT[DOI]). When RX buffer is full, RX
buffer full interrupt is generated (INT_STAT[RXFI]). If RX buffer is still full after INT_STAT[RXFI] was cleared, interrupt
is generated again. When there is at least one CAN frame stored in RX buffer, RX buffer not empty interrupt is generated
(INT_STAT[RBNEI]). When any TXT buffer moves from “Ready”, “TX in progress” or “Abort in progress” states to any
of “TX OK”, “Aborted” or “TX failed” states TXT buffer HW change interrupt is generated (INT_STAT[TXBHCI]).

2.12.4 Error and Overload frame

When CTU CAN FD starts Error frame transmission, Bus error interrupt is generated (INT_STAT[BEI]). When overload
frame transmission is started, Overload frame interrupt is generated (INT_STAT[OFI]).

2.12.5 Other

When CTU CAN FD switches bit rate on CAN bus, it generates Bit rate switch interrupt (INT_STAT[BSI]). When CTU
CAN FD looses arbitration, Arbitration lost interrupt is generated (INT_STAT[ALI]).

23

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.13 Fault Tolerance

CTU CAN FD implements following fault tolerance mechanisms:

• Parity protection on RX Buffer RAM

• Parity Protection on TXT Buffer RAMs

• TXT Buffer Backup Mode (MODE[TXBBM]).

Following conditions must be met for these mechanisms to operate:

• CTU CAN FD must contain support for parity protection (STATUS[SPRT]=1). If STATUS[SPRT]=0, CTU CAN
FD contains no parity protection (since it was not synthesized with it), and this section is not applicable.

• SW drivers sets SETTINGS[PCHKE] = 1. This bit enables parity error detection. SW shall modify SET-
TINGS[PCHKE] only when SETTINGS[ENA] = 0.

2.13.1 Parity protection on RX Buffer RAM

When CTU CAN FD receives CAN Frame and stores it to RX Buffer RAM, it adds single parity bit to each word of RX
Buffer RAM. When SW driver is reading the frame from RX Buffer RAM, it can check for if parity error occured in the
frame by reading STATUS[RXPRE] bit. CTU CAN FD sets STATUS[RXPRE] upon each read from RX_DATA register
, if parity bit in the word being read from RX Buffer RAM is not matching calculated parity bit.
Since a a spurious single-event upset (SEU) in RX Buffer RAM can potentially modify FRAME_FORMAT_W[DLC] word
of received frame in RX Buffer RAM, it may hamper the length of the RX frame as seen by SW driver, and therefore get
RX Buffer into inconsistent state where SW driver has read only part of a received frame. In such situation, all further
frames read from RX Buffer would be corrupted. To avoid this situation, following procedure can be applied when reading
RX frames from RX Buffer with focus on parity checking:

#define CTU_CAN_FD_BASE 0x12000000
#define STATUS_ADDR (CTU_CAN_FD_BASE + 0x8)
#define COMMAND_ADDR (CTU_CAN_FD_BASE + 0xC)
#define RX_STATUS_ADDR (CTU_CAN_FD_BASE + 0x68)
#define RX_DATA_ADDR (CTU_CAN_FD_BASE + 0x6C)

/* Read frame from RX Buffer RAM, and check parity error.*/
uint8_t data[64];
uint32_t tmp;
uint32_t ffw = can_read_32(RX_DATA_ADDR);
uint32_t id = can_read_32(RX_DATA_ADDR);
uint32_t ts_l = can_read_32(RX_DATA_ADDR);
uint32_t ts_h = can_read_32(RX_DATA_ADDR);
/* If Parity error is in FRAME_FORMAT_W, RWCNT might be unreliable. */
if (can_read_32(STATUS_ADDR) >> 10) & 0x1)

goto rx_buffer_flush;

24

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

uint32_t rwcnt = (ffw >> 11) & 0x1F;
for(int i = 0; i < rwcnt; i++){

tmp = can_read_32(RX_DATA_ADDR);
data[i*4] = tmp & 0xFF;
data[i*4+1] = (tmp >> 8) & 0xFF;
data[i*4+2] = (tmp >> 16) & 0xFF;
data[i*4+3] = (tmp >> 24) & 0xFF;

if (can_read_32(STATUS_ADDR) >> 10) & 0x1)

goto parity_err_handler;

}
return RX_FRAME_READ_OK;

/* Read out corrupted RX frame until start of new frame. */
parity_err_handler:

int i=0;
while (i < 16) {

if (((can_read_32(RX_STATUS_ADDR) >> 2) & 0x1) == 0){

can_write_32(COMMAND_ADDR, 0x200);
return RX_FRAME_DROPPED;

}
i++;
can_read_32(RX_DATA_ADDR);

}

/* If we get here, there is a danger that RX Buffer is not in consistent state. */
rx_buffer_flush:

can_write_32(COMMAND_ADDR, 0x202);
return RX_BUFFER_RESET;

Note The example above assumes that RX Buffer is read in Automatic mode (MODE[RXBAM]=1). However if single
word from RX Buffer is read via e.g. 4 x 8-bit accesses in MODE[RXBAM]=0, CTU CAN FD sets STATUS[RXPE]
upon each read from a RX_DATA which contains parity error.

Note Writing COMMAND[CRXPE]=1 by SW clears STATUS[RXPE] bit.

Note When SETTINGS[PCHKE] = 0, CTU CAN FD ignores parity error detected in RX buffer (STATUS[RXPE] is not
set, and COMMAND[CRXPE] has no effect).

Note When writing RX Buffer RAM via Test Registers (see 2.16.5), parity bit of corresponding word of RX Buffer RAM
is not updated. See 2.13.4

2.13.2 Parity protection on TXT Buffer RAMs

When SW stores a CAN frame to TXT Buffer, CTU CAN FD appends a parity bit to each word in the TXT Buffer RAM.
When CTU CAN FD attempts to transmit a frame from TXT Buffer and it detects parity error in TXT Buffer RAM, it
behaves like so:

25

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

1. If CTU CAN FD detects parity error in FRAME_FORMAT_W, IDENTIFIER_W, TIMESTAMP_U_W or TIMES-
TAMP_L_W it does not attempt to transmit the CAN Frame.

2. If CTU CAN FD does not detect parity error in any of TXT Buffer words mentioned in previous point, it attempts
to transmit the CAN Frame.

3. If during transmission of CAN frame CTU CAN FD detects parity error in any of DATA_1_4_W - DATA_61_64_W
words from which it transmits CAN frame data payload, it starts transmitting an error frame.

If CTU CAN FD detects a parity error in TXT Buffer RAM as described in Steps 1 or 3, such TXT Buffer moves to
“Parity Error” state as shown in 2.7 and STATUS[TXPE] bit is set.

Note If CTU CAN FD detects a parity error in TXT Buffer, SW shall write the whole CAN frame to TXT Buffer again
before it attempts to use it for further transmissions.

Note Writing COMMAND[CTXPE]=1 by SW clears STATUS[TXPE] bit.

Note When SETTINGS[PCHKE]=0, CTU CAN FD ignores parity error detected in TXT buffers (STATUS[TXPE] is
not set, COMMAND[CTXPE] has no effect and TXT Buffers do not move to Parity Error state).

Note When SW writes TXT Buffer RAM via Test Registers (see 2.16.5), parity bit of corresponding word in TXT Buffer
RAM is not updated. See 2.13.4

Note CTU CAN FD does not detect parity errors in FRAME_TEST_W. Purpose of FRAME_TEST_W is to intentionally
corrupt transmitted frame (e.g. for testing of error scenarios on CAN bus). Such feature is most likely not usefull
in applications which require parity protection (high reliability application which aim for fault tolerance).

2.13.3 TXT Buffer Backup mode

When MODE[TXBBM]=1, CTU CAN FD operates in TXT Buffer Backup mode. In TXT Buffer Backup mode, TXT
Buffers with adjacent indices form pairs (e.g. if TXTB_INFO[TXT_BUFFER_COUNT]=8 (CTU CAN FD contains 8
TXT Buffers) there are 4 TXT Buffer pairs: 1-2, 3-4, 5-6, 7-8) as is shown in Figure 2.15.

TXT Buffer 1

TXT Buffer 2
(backup)

TXT Buffer 3

TXT Buffer 4
(backup)

TXT Buffer 5

TXT Buffer 6
(backup)

TXT Buffer 7

TXT Buffer 8
(backup)

Figure 2.15: TXT Buffer pairs

Operation of CTU CAN FD in TXT Buffer Backup mode provides additional fault tolerance since TXT Buffer with higher
index within TXT Buffer pair serves as “backup” in case of parity error in “original” TXT Buffer. The operation of CTU
CAN FD in TXT Buffer Backup mode is shown in Figure 2.16 and explained in this section.
When MODE[TXBBM]=1, and CTU CAN FD detects a parity error in “original” TXT Buffer RAM, such TXT Buffer
moves to “Parity Error” state, and CTU CAN FD attempts to transmit frame from its “backup” TXT Buffer (e.g. if
CTU CAN FD detects parity error in TXT Buffer 3, it attempts to transmit a frame from TXT Buffer 4). If CTU CAN
FD succesfully transmits a frame from “original” TXT Buffer, its “backup” Buffer moves to “Aborted” state (CTU CAN
FD does not transmit frame in the “backup” TXT Buffer).

26

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

When CTU CAN FD is transmitting a frame from a “backup” TXT Buffer due to parity error in “original” TXT Buffer,
and it detects parity error also in “backup” TXT Buffer RAM, CTU CAN FD sets STATUS[TXDPE] bit (Double parity
error).
When CTU CAN FD operates in TXT Buffer Backup mode, SW control of TXT Buffers has following differences
compared to MODE[TXBBM]=0 scenario:

• Priorities of both TXT Buffers within TXT Buffer pair are equal, and they are given by TX_PRIORITY[TX*P] of
“original” TXT Buffer (e.g. priority of TXT Buffers 1 and 2 is given by TX_PRIORITY[TX1P], and TX_PRIORITY[TX2P]
has no effect).

• CTU CAN FD automatically applies commands issued by SW to each “original” TXT Buffer also to its corresponding
“backup” TXT buffer (e.g. if SW gives command to TXT Buffer 1 (TX_COMMAND[TXB1] = 1), CTU CAN FD
automatically applies it also to TXT Buffer 2).

It is assumed that SW stores equal CAN frames to both TXT Buffers from TXT Buffer pair when attempting to send
CAN frame. In such case, the effect of TXT Buffer Backup mode is following: If parity error occurs in “original” TXT
Buffer RAM, the same frame is transmitted from “backup” TXT buffer.

Highest priority
OB in “Ready” state

OB -> TX in Progress

OB -> TX OK
BB -> Aborted

OB -> Parity Error
Set STATUS[TXPE]=1
Parity error in first 4
words of BB RAM?

Succesfull
transmission

Parity error in
DATA_*_* words

of OB RAM.

Parity Error in first 4
words of OB RAM.

Yes

No

SETTINGS[RTRLE] = 1
and Retransmit limit

reached?

Error frame or
Arbitration lost

No

OB -> TX Failed
BB -> Aborted

Yes

OB -> Ready

BB -> Parity Error
Set STATUS[TXDPE]=1

BB -> TX Error

BB -> TX In Progress

BB -> Ready

SETTINGS[RTRLE] = 1
and Retransmit limit

reached?

BB -> TX OK

Yes

No

No

Successfull
transmission

Yes

Error frame or
Arbitration lost

OB – “original” TXT Buffer
BB – “backup” TXT Buffer

Legend:

Parity error in
DATA_*_* words

of BB RAM.

Figure 2.16: Operation in TXT Buffer Backup Mode

Note Storing equal frames to both TXT Buffers by separate memory accesses is intended by design. CTU CAN FD does
not automatically store this frame to both TXT Buffers to avoid effect of potential SEU in the moment of storing

27

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

the frame to TXT Buffer. If such SEU occured, it could happend that frame is stored to both TXT Buffers with
parity error already in it.

Note SW does not necessarily need to store equal frames to both TXT Buffers from a TXT Buffer pair. It may simply
store any frame which shall be transmitted if parity error occurs in “original” TXT Buffer to “backup” TXT Buffer.

Note SW shall set MODE[TXBBM] = 1 together with SETTINGS[PCHKE] = 1. If MODE[TXBBM] = 1 together with
SETTINGS[PCHKE] = 0, CTU CAN FD ignores parity errors in “original” TXT Buffers and never transmits frame
from “backup” TXT Buffers.

Note If CTU CAN FD detects parity error in “original” TXT Buffer during CAN frame transmission, and another TXT
Buffer with Higher priority than currently selected TXT buffer pair moved to Ready state (due to SW issuing
Set Ready command), CTU CAN FD will attempt to transmit frame from higher priority TXT Buffer during next
transmission (ignoring “backup” TXT Buffer).

Note TXT Buffer Backup mode is supported only when CTU CAN FD contains even number of TXT Buffers. If CTU
CAN FD contains odd number of TXT Buffers, there exists one TXT Buffer which has no “backup” buffer. In
such case SW shall not use this spare “original” TXT Buffer when MODE[TXBBM] = 1. If this TXT Buffer is
available used when MODE[TXBBM], behavior of CTU CAN FD is undefined.

2.13.4 Parity protection testing

When Test registers memory region (see Section 3) is present in CTU CAN FD (STATUS[STRGS] = 1), write to TXT
Buffer / RX Buffer RAMs via this memory region does not update parity bit value stored per each memory word of TXT
Buffer / RX Buffer RAMs. This allows on-chip verification of parity detection capabilites on both TXT Buffer / RX
Buffer RAMs. Following sequence checks parity detection capabilities on RX Buffer RAM:

1. CTU CAN FD receives CAN frame to RX Buffer RAM.

2. SW reads RX Buffer RAM memory via Test Registers memory region (reffer to [1] for details of such procedure).

3. SW modifies a bit in memory word of CAN frame read in previous step, and stores such modified frame back to
RX Buffer RAM via Test Registers memory region.

4. SW reads a frame from RX Buffer via RX_DATA register and then reads STATUS[RXPE]. If STATUS[RXPE] =
1, then parity error detection mechanism on RX Buffer RAM works correctly.

Following sequence checks parity detection capabilities on TXT Buffer RAM:

1. SW inserts CAN frame to TXT Buffer.

2. SW reads such frame via Test Registers memory region, modifies a bit in random word, and stores back such word
via Test Registers memory region.

3. SW sends Set ready (via TX_COMMAND register) command to a TXT Buffer where CAN frame was stored in
previous two steps.

4. CTU CAN FD attempts to transmit a frame from this TXT Buffer (assuming no other TXT Buffer is in “Ready”
state). When reading a memory word which contains bit-flip, CTU CAN FD sends error frame, and sets STA-
TUS[TXPE]=1.

5. SW reads STATUS[TXPE]. If yes STATUS[TXPE]=1, parity detection mechanism on TXT Buffer RAM works
correctly.

28

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Note When SW flips a random bit in TXT Buffer RAM, it must flip a bit in memory words which will be read by
CTU CAN FD when it attempts to transmit the frame. E.g. if SW flips a bit in DATA_61_64_W, but inserted
CAN frame only contains 8 data bytes (FRAME_FORMAT_W[DLC]=1000), CTU CAN FD will not attempt to
read DATA_61_64_W word from TXT Buffer RAM (it will only read DATA_1_4_W and DATA_5_8_W), and
therefore it will not set STATUS[TXPE] bit.

Note When accessing RX Buffer / TXT Buffer RAMs via Test Registers Memory region, TSTCTRL[TMENA] (test
access enable bit) must be set only when the access is executed, not during operation of the core. Typically, such
access consists of:

1. Set TSTCTRL[TMENA]=1.

2. Read / Write RX Buffer / TXT Buffer RAM via TST_DEST, TST_WDATA, TSTCTRL, TST_RDATA registers.

3. Set TSTCTRL[TMENA]=0.

2.14 Special modes

2.14.1 Loopback mode

In Loopback mode, any CAN frame transmitted by CTU CAN FD from any of TXT buffers, will be stored to RX buffer
if its transmission is successfull (and the frame passes Frame filters). Note that altough CTU CAN FD stores its own
transmitted frame to RX buffer, it still acts as a transmitter, therefore it does not acknowledge its own frame! For
succesfull transmission, the frame must be acknowledged by other node on CAN bus. Loopback mode is enabled when
SETTINGS[ILBP]=1. SETTINGS[ILBP] shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.2 Self test mode

In Self test mode CTU CAN FD considers transmitted frame valid even if does not receive dominant bit during ACK slot.
This mode can be used along with Loopback mode to verify operation of CTU CAN FD when it is single node on a bus.
Self test mode is enabled when MODE[STM]=1. MODE[STM] shall be modified only when CTU CAN FD is disabled
(SETTINGS[ENA] = 0).

2.14.3 Acknowledge forbidden mode

When Acknowledge forbidden mode is enabled, CTU CAN FD acting as receiver of CAN frame does not transmitt
dominant bit during ACK slot even if received CRC matches calculated CRC. Acknowledge forbidden mode is enabled
when MODE[ACF] = 1. MODE[ACF] shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.4 Self acknowledge mode

When Self acknowledge mode is enabled, CTU CAN FD sends dominant ACK bit even when it transmitts CAN frame.
Self acknowledge mode is enabled when MODE[SAM] = 1. MODE[SAM] shall be modified only when SETTINGS[ENA]
= 0.

29

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

2.14.5 Bus monitoring mode

In Bus monitoring mode, CTU CAN FD does not transmit any frames, it only receives CAN frames. If CAN frame is
inserted to TXT buffer and Set ready command is issued, frame will not be transmitted, and TXT buffer will immediately
move to “TX failed” state. In Bus monitoring mode, CTU CAN FD does not transmit any dominant bit on the bus. If
dominant bit is about to be transmitted to the bus (e.g. ACK or error frame), it is re-routed internally so that CTU CAN
FD receives this bit, but other nodes on CAN bus do not see this dominant bit. Bus monitoring mode is enabled when
MODE[BMM] = 1. MODE[BMM] shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.6 Restricted operation mode

In Restricted operation mode, CTU CAN FD is able to receive frames on CAN bus, but it does not transmit any frames.
If CAN frame is inserted to TXT buffer and Set ready command is issued, frame will not be transmitted, and TXT buffer
will immediately move to “TX failed” state. In Restricted operation mode, CTU CAN FD gives ACK to valid frames, but
it does not send Error frames nor Overload frames. If Error or Overload condition is detected, CTU CAN FD enters bus
integration state, and waits for 11 consecutive recessive bits. In Restricted operation mode, REC and TEC counters are
not modified, therefore CTU CAN FD will always stay in Error active state. Restricted operation mode is enabled when
MODE[ROM] = 1. MODE[ROM] shall be modified only when CTU CAN FD is disabled (SETTINGS[ENA] = 0).

2.14.7 Test mode

CTU CAN FD has Test mode which is enabled when MODE[TSTM] = 1. In Test mode, CTU CAN FD has the following
features:

• ERP register is writable, therefore threshold for transition from error-active to error-passive state is configurable.

• EWL register is writable, therefore threshold for generating Error warning limit interrupt (INT[EWLI]) is config-
urable.

• CTR_PRES register is writable, therefore all error counters can be modified by SW driver.

Note Test mode shall be used for debugging / development purpose only (e.g. testing of higher layers behavior during
error-passive state). It shall not be used during regular operation of CTU CAN FD.

2.15 Corrupting transmitted CAN frames

CTU CAN FD provides following means for corrupting/modifying transmitted CAN frame:

• Invert a bit of CRC field.

• Invert a bit of Stuff count field or Stuff Parity field.

• Replace DLC with arbitrary value.

All features for corrupting transmitted CAN frames are configured per each transmitted frame in FRAME_TEST_W
memory word in TXT Buffer, details are explained in following subsections. These features are available only in Test
mode (MODE[TSTM]=1). If MODE[TSTM]=0 , CTU CAN FD ignores this configuration and transmitts uncorrupted
frames (as in regular operation). Corrupting applies only to transmitted frames, if CTU CAN FD is a receiver of a frame,
it does not corrupt frames such frame (It does not corrupt frames transmitted by other CAN nodes on the network).

30

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Note Corrupting a bit, or replacing a bit field with alternative value applies before bit-stuffing, therefore effect of flipping
the bit may alternate length of the frame due to additional/removed stuff bit.

Note To repeat transmission of a frame multiple times with corrupted bit, use standard “Retransmit limitation” mech-
anism, reffer to 2.2.

Note FRAME_TEST_W word of CAN frame is present only in TXT Buffers, it does not exist in RX Buffer (longest
CAN frame in RX Buffer still has 20 words, not 21).

2.15.1 Flip a bit of CRC field

When FRAME_TEST_W[FCRC] = 1, CTU CAN FD transmitts inverted bit at CRC field bit position given by FRAME_TEST_W[TPRM].
E.g. :

• FRAME_TEST_W[TPRM] = 0x0 -> Bit at position 0 in CRC field (first bit of CRC field) is transmitted with
opposite value.

• FRAME_TEST_W[TPRM] = 0xE -> Bit at position 14 in CRC field (15-th bit of CRC filed) is transmitted with
opposite value.

Note If FRAME_TEST_W[FIND] is bigger than length of CRC field, no bit is flipped.

2.15.2 Flip a bit of Stuff count field

When FRAME_TEST_W[FSTC] = 1, CTU CAN FD transmitts inverted bit at Stuf count field bit position given by
FRAME_TEST_W[TPRM]. E.g. :

• FRAME_FORMAT_W[TPRM] = 0x0 -> First bit of Stuff count field is transmitted with opposite value.

• FRAME_FORMAT_W[TPRM] = 0x2 -> Third bit of Stuff count field is transmitted with opposite value.

• FRAME_FORMAT_W[TPRM] = 0x3 -> Stuff Parity bit is transmitted with opposite value.

2.15.3 Replace DLC with arbitrary value

When FRAME_TEST_W[SDLC] = 1, FRAME_TEST_W[CPRM][3:0] bits are transmitted instead of
FRAME_TEST_W[DLC] in Data Lenght Code field of CAN frame. Number of data bytes transmitted is still derived
from FRAME_TEST_W[DLC] field.

Note CRC transmitted is calculated from FRAME_TEST_W[TPRM] (swapped value).

2.16 Other features

2.16.1 Error code capture

CTU CAN FD contains Error code capture register. This register stores type and position of last error on CAN bus
which caused transmission of error frame. Error code capture is updated in sample point of bit where error was detected.
Error code capture is readable via ERR_CAPT register. CAN FD standard does not defined types of errors as mutually
exclusive (e.g. bit error and stuff error may occur at the same time when transmitted stuff bit value is corrupted to
opposite value). In such case, Error code capture captures only one type of error with highest priority. Priorities of error
types are defined as (Form error having the highest priority):

31

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

2. FUNCTIONAL DESCRIPTION

Priority 1 2 3 4 5
Error type Form error Bit error CRC error ACK error Stuff error

Note Stuff error which occured during fixed bit stuffing method of CAN FD frame is reported as Form error in Error
code capture register.

Note There is an exception to above mentioned error priority order. If dominant stuff bit is sent during arbitration field
and recessive value is sampled, then this is captured as Stuff error, not as Bit error.

2.16.2 Arbitration lost capture

CTU CAN FD contains Arbitration lost capture register (ALC). This register stores bit position within CAN arbitration
field on which CTU CAN FD last time lost arbitration.

2.16.3 Traffic counters

CTU CAN FD can measure CAN frames transmitted/received on CAN bus. Upon every succesfully transmitted CAN
frame, TX_COUNTER register is incremented by 1. Upon every successfully received CAN frame, RX_COUNTER regis-
ter is incremented by 1. TX_COUNTER register can be cleared by writing COMMAND[TXFCRST]=1. RX_COUNTER
register can be cleared by writing COMMAND[RXFCRST]=1. When CTU CAN FD is in Loopback mode and own
transmitted frame is stored to RX buffer, RX_COUNTER is also incremented. Traffic counters are optional in CTU CAN
FD. Presence of traffic counters can be determined by reading STATUS[STCNT] bit.

2.16.4 Debug register

CTU CAN FD contains debug register (DEBUG_REGISTER) which directly reflects part/field of CAN frame which is
currently being transmitted / received.

2.16.5 Memory testability

CTU CAN FD supports manufacturing testability of its internal memories (TXT buffer RAMs and RX buffer RAM) via
Test Registers memory region. For details on memory testing reffer to [1].

32

3. CAN FD Core memory map

CTU CAN FD is 32 bit peripheria with support of 8, 16 or 32 bit access. Unaligned access is not supported. Byte or
half word access is supported. The memory is organized as Big endian. Write to read only memory location will have no
effect. Read from write only memory location can return undefined values. The memory map of CTU CAN FD consists
of following memory regions:

Memory region Address offset
Control registers 0x000

TXT Buffer 1 0x100
TXT Buffer 2 0x200
TXT Buffer 3 0x300
TXT Buffer 4 0x400
TXT Buffer 5 0x500
TXT Buffer 6 0x600
TXT Buffer 7 0x700
TXT Buffer 8 0x800
Test registers 0x900

33

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1 Control registers

Control registers memory region.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

VERSION DEVICE_ID 0x0
SETTINGS MODE 0x4

STATUS 0x8
COMMAND 0xC

Reserved INT_STAT 0x10
Reserved INT_ENA_SET 0x14
Reserved INT_ENA_CLR 0x18
Reserved INT_MASK_SET 0x1C
Reserved INT_MASK_CLR 0x20

BTR 0x24
BTR_FD 0x28

FAULT_STATE ERP EWL 0x2C
TEC REC 0x30

ERR_FD ERR_NORM 0x34
CTR_PRES 0x38

FILTER_A_MASK 0x3C
FILTER_A_VAL 0x40

FILTER_B_MASK 0x44
FILTER_B_VAL 0x48

FILTER_C_MASK 0x4C
FILTER_C_VAL 0x50

FILTER_RAN_LOW 0x54
FILTER_RAN_HIGH 0x58

FILTER_STATUS FILTER_CONTROL 0x5C
RX_MEM_INFO 0x60
RX_POINTERS 0x64

Reserved RX_SETTINGS RX_STATUS 0x68
RX_DATA 0x6C

TX_STATUS 0x70
TXTB_INFO TX_COMMAND 0x74

TX_PRIORITY 0x78
TS_INFO ALC RETR_CTR ERR_CAPT 0x7C

SSP_CFG TRV_DELAY 0x80
RX_FR_CTR 0x84
TX_FR_CTR 0x88

DEBUG_REGISTER 0x8C
YOLO_REG 0x90

TIMESTAMP_LOW 0x94
TIMESTAMP_HIGH 0x98

Reserved ...

34

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.1 DEVICE_ID

Type: read-only

Offset: 0x0

Size: 2 bytes

Identifer of CTU CAN FD. Can be used to check if CTU CAN FD is accessible correctly on its base address.

Bit index 15 14 13 12 11 10 9 8
Field name DEVICE_ID[15:8]
Reset value 1 1 0 0 1 0 1 0

Bit index 7 6 5 4 3 2 1 0
Field name DEVICE_ID[7:0]
Reset value 1 1 1 1 1 1 0 1

DEVICE_ID Device ID
0b1100101011111101 - CTU_CAN_FD_ID - Identifier of CTU CAN FD.

3.1.2 VERSION

Type: read-only

Offset: 0x2

Size: 2 bytes

Version register. Returns version of CTU CAN FD.

Bit index 15 14 13 12 11 10 9 8
Field name VER_MAJOR
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name VER_MINOR
Reset value X X X X X X X X

VER_MINOR Minor part of CTU CAN FD version. E.g for version 2.1 this field has value 0x01.

VER_MAJOR Minor part of CTU CAN FD version. E.g for version 2.1 this field has value 0x02.

35

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.3 MODE

Type: read-write

Offset: 0x4

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name Reserved SAM TXBBM RXBAM TSTM
Reset value - - - - 0 0 1 0

Bit index 7 6 5 4 3 2 1 0
Field name ACF ROM TTTM FDE AFM STM BMM RST
Reset value 0 0 0 1 0 0 0 0

RST Soft reset. Writing logic 1 resets CTU CAN FD. After writing logic 1, logic 0 does not need to be written, this bit
is automatically cleared.

BMM Bus monitoring mode. In this mode CTU CAN FD only receives frames and sends only recessive bits on CAN
bus. When a dominant bit is sent, it is re-routed internally so that bus value is not changed. When this mode is
enabled, CTU CAN FD will not transmit any frame from TXT Buffers,
0b0 - BMM_DISABLED - Bus monitoring mode disabled.
0b1 - BMM_ENABLED - Bus monitoring mode enabled.

STM Self Test Mode. In this mode transmitted frame is considered valid even if dominant acknowledge was not received.
0b0 - STM_DISABLED - Self test mode disabled.
0b1 - STM_ENABLED - Self test mode enabled.

AFM Acceptance Filters Mode. If enabled, only RX frames which pass Frame filters are stored in RX buffer. If disabled,
every received frame is stored to RX buffer. This bit has meaning only if there is at least one filter available.
Otherwise, this bit is reserved.
0b0 - AFM_DISABLED - Acceptance filter mode disabled
0b1 - AFM_ENABLED - Acceptance filter mode enabled

FDE Flexible data rate enable. When flexible data rate is enabled CTU CAN FD recognizes CAN FD frames (FDF bit
= 1).
0b0 - FDE_DISABLE - Flexible data-rate support disabled.
0b1 - FDE_ENABLE - Flexible data-rate support enabled.

TTTM Time triggered transmission mode.
0b0 - TTTM_DISABLED -
0b1 - TTTM_ENABLED -

ROM Restricted operation mode.
0b0 - ROM_DISABLED - Restricted operation mode is disabled.
0b1 - ROM_ENABLED - Restricted operation mode is enabled.

ACF Acknowledge Forbidden Mode. When enabled, acknowledge is not sent even if received CRC matches the calculated
one.
0b0 - ACF_DISABLED - Acknowledge forbidden mode disabled.
0b1 - ACF_ENABLED - Acknowledge forbidden mode enabled.

36

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

TSTM Test Mode. In test mode several registers have special features. Reffer to description of Test mode for further
details.

RXBAM RX Buffer Automatic mode.
0b0 - RXBAM_DISABLED - RX Buffer Automatic mode Disabled.
0b1 - RXBAM_ENABLED - RX Buffer Automatic mode Enabled.

TXBBM TXT Buffer Backup mode.
0b0 - TXBBM_DISABLED - TXT Buffer Backup mode disabled.
0b1 - TXBBM_ENABLED - TXT Buffer Backup mode enabled.

SAM Self-acknowledge mode.
0b0 - SAM_DISABLE - Do not send dominant ACK bit when CTU CAN FD sends Acknowledge bit.
0b1 - SAM_ENABLE - Send dominant ACK bit when CTU CAN FD transmits CAN frame.

3.1.4 SETTINGS

Type: read-write

Offset: 0x6

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name Reserved PCHKE FDRF TBFBO PEX
Reset value - - - - X 0 1 0

Bit index 7 6 5 4 3 2 1 0
Field name NISOFD ENA ILBP RTRTH RTRLE
Reset value 0 0 0 0 0 0 0 0

RTRLE Retransmitt Limit Enable. If enabled, CTU CAN FD only attempts to retransmitt each frame up to RTR_TH
times.
0b0 - RTRLE_DISABLED - Retransmitt limit is disabled.
0b1 - RTRLE_ENABLED - Retransmitt limit is enabled.

RTRTH Retransmitt Limit Threshold. Maximal amount of retransmission attempts when SETTINGS[RTRLE] is en-
abled.

ILBP Internal Loop Back mode. When enabled, CTU CAN FD receives any frame it transmitts.
0b0 - INT_LOOP_DISABLED - Internal loop-back is disabled.
0b1 - INT_LOOP_ENABLED - Internal loop-back is enabled.

ENA Main enable bit of CTU CAN FD. When enabled, CTU CAN FD communicates on CAN bus. When disabled, it
is bus-off and does not take part of CAN bus communication.
0b0 - CTU_CAN_DISABLED - The CAN Core is disabled.
0b1 - CTU_CAN_ENABLED - The CAN Core is enabled.

37

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

NISOFD Non ISO FD. When this bit is set, CTU CAN FD is compliant to NON-ISO CAN FD specification (no stuff
count field). This bit should be modified only when SETTINGS[ENA]=0.
0b0 - ISO_FD - The CAN Controller conforms to ISO CAN FD specification.
0b1 - NON_ISO_FD - The CAN Controller conforms to NON ISO CAN FD specification.

PEX Protocol exception handling. When this bit is set, CTU CAN FD will start integration upon detection of protocol
exception. This should be modified only when SETTINGS[ENA] = ’0’.
0b0 - PROTOCOL_EXCEPTION_DISABLED - Protocol exception handling is disabled.
0b1 - PROTOCOL_EXCEPTION_ENABLED - Protocol exception handling is enabled.

TBFBO All TXT buffers shall go to "TX failed" state when CTU CAN FD becomes bus-off.
0b0 - TXTBUF_FAILED_BUS_OFF_DISABLED - TXT Buffers dont go to "TX failed" state when CTU CAN
FD becomes bus-off.
0b1 - TXTBUF_FAILED_BUS_OFF_ENABLED - TXT Buffers go to "TX failed" state when CTU CAN FD
becomes bus-off.

FDRF Frame filters drop Remote frames.
0b0 - DROP_RF_DISABLED - Frame filters accept RTR frames.
0b1 - DROP_RF_ENABLED - Frame filters drop RTR frames.

PCHKE Enable Parity checks in TXT Buffers and RX Buffer.

3.1.5 STATUS

Type: read-only

Offset: 0x8

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved SPRT STRGS STCNT
Reset value - - - - - X X X

Bit index 15 14 13 12 11 10 9 8
Field name Reserved TXDPE TXPE RXPE PEXS
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name IDLE EWL TXS RXS EFT TXNF DOR RXNE
Reset value 1 0 0 0 0 1 0 0

RXNE RX buffer not empty. This bit is 1 when least one frame is stored in RX buffer.

38

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

DOR Data Overrun flag. This bit is set when frame was dropped due to lack of space in RX buffer. This bit can be
cleared by COMMAND[RRB].

TXNF TXT buffers status. This bit is set if at least one TXT buffer is in "Empty" state.

EFT Error frame is being transmitted at the moment.

RXS CTU CAN FD is receiver of CAN Frame.

TXS CTU CAN FD is transmitter of CAN Frame.

EWL TX Error counter (TEC) or RX Error counter (REC) is equal to, or higher than Error warning limit (EWL).

IDLE Bus is idle (no frame is being transmitted/received) or CTU CAN FD is bus-off.

PEXS Protocol exception status (flag). Set when Protocol exception occurs. Cleared by writing COMMAND[CPEXS]=1.

RXPE Set when parity error is detected during read of CAN frame from RX Buffer via RX_DATA register.

TXPE TXT Buffers Parity Error flag. Set When Parity Error is detected in a TXT Buffer during transmission from this
buffer.

TXDPE TXT Buffer double parity error. Set in TXT Buffer Backup mode when parity error is detected in "backup"
TXT Buffer.

STCNT Support of Traffic counters. When this bit is 1, Traffic counters are present.

STRGS Support of Test Registers for memory testability. When this bit is 1, Test Registers are present.

SPRT Support of Parity protection on each word of TXT Buffer RAM and RX Buffer RAM.

3.1.6 COMMAND

Type: write-only

Offset: 0xC

Size: 4 bytes

Allows issuing commands to CTU CAN FD. Writing logic 1 to each bit gives a command to CTU CAN FD. After writing
logic 1, logic 0 does not need to be written.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved
Reset value - - - - - - - -

Bit index 15 14 13 12 11 10 9 8
Field name Reserved CTXDPE CTXPE CRXPE
Reset value - - - - - 0 0 0

39

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name CPEXS TXFCRST RXFCRST ERCRST CDO RRB RXRPMV Reserved
Reset value 0 0 0 0 0 0 X -

RXRPMV RX Buffer read pointer move.

RRB Release RX Buffer. This command flushes RX buffer and resets its memory pointers.

CDO Clear Data Overrun flag in RX buffer.

ERCRST Error Counters Reset. When unit is bus off, issuing this command will request erasing TEC, REC counters after
128 consecutive ocurrences of 11 recessive bits. Upon completion, TEC and REC are erased and fault confinement
state is set to error-active. When unit is not bus-off, or when unit is bus-off due to being disabled (SETTINGS[ENA]
= ’0’), this command has no effect.

RXFCRST Clear RX bus traffic counter (RX_COUNTER register).

TXFCRST Clear TX bus traffic counter (TX_COUNTER register).

CPEXS Clear Protocol exception status (STATUS[PEXS]).

CRXPE Clear STATUS[RXPE] flag.

CTXPE Clear STATUS[TXPE] flag.

CTXDPE Clear STATUS[TXDPE] flag.

3.1.7 INT_STAT

Type: read-writeOnce

Offset: 0x10

Size: 2 bytes

Interrupt Status register. Reading this register returns logic 1 for each interrupt which ocurred. Writing logic 1 to any
bit clears according interrupt status. Writing logic 0 has no effect.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved TXBHCI RBNEI BSI RXFI
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name OFI BEI ALI FCSI DOI EWLI TXI RXI
Reset value 0 0 0 0 0 0 0 0

RXI Frame received interrupt.

TXI Frame transmitted interrupt.

40

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

EWLI Error warning limit interrupt. When both TEC and REC are lower than EWL and one of the becomes equal to or
higher than EWL, or when both TEC and REC become less than EWL, this interrupt is generated. When Interrupt
is cleared and REC, or TEC is still equal to or higher than EWL, Interrupt is not generated again.

DOI Data overrun interrupt. Before this interrupt is cleared , STATUS[DOR] must be cleared to avoid setting of this
interrupt again.

FCSI Fault confinement state changed interrupt. Interrupt is set when node turns error-passive (from error-active),
bus-off (from error-passive) or error-active (from bus-off after reintegration or from error-passive).

ALI Arbitration lost interrupt.

BEI Bus error interrupt.

OFI Overload frame interrupt.

RXFI RX buffer full interrupt.

BSI Bit rate shifted interrupt.

RBNEI RX buffer not empty interrupt. Clearing this interrupt and not reading out content of RX Buffer via RX_DATA
will re-activate the interrupt.

TXBHCI TXT buffer HW command interrupt. Anytime TXT buffer receives HW command from CAN Core which
changes TXT buffer state to "TX OK", "Error" or "Aborted", this interrupt will be generated.

3.1.8 INT_ENA_SET

Type: read-writeOnce

Offset: 0x14

Size: 2 bytes

Interrupt Enable Set. Writing logic 1 to a bit enables according interrupt. Writing logic 0 has no effect. Reading this
register returns logic 1 for each enabled interrupt. If interrupt is captured in INT_STAT, enabled interrupt will cause
CTU CAN FD to raise interrupt. Interrupts are level-based, it remains active until Interrupt status is cleared or interrupt
is disabled.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved INT_ENA_SET[11:8]
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name INT_ENA_SET[7:0]
Reset value 0 0 0 0 0 0 0 0

INT_ENA_SET Bit meaning is equivalent to register INT_STAT.

41

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.9 INT_ENA_CLR

Type: write-only

Offset: 0x18

Size: 2 bytes

Interrupt Enable Clear register. Writing logic 1 disables according interrupt. Writing logic 0 has no effect. Reading this
register has no effect. Disabled interrupt wil not cause interrupt to be raised by CTU CAN FD even if it is set in Interrupt
status register.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved INT_ENA_CLR[11:8]
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name INT_ENA_CLR[7:0]
Reset value 0 0 0 0 0 0 0 0

INT_ENA_CLR Bit meaning is equivalent to register INT_STAT.

3.1.10 INT_MASK_SET

Type: read-writeOnce

Offset: 0x1C

Size: 2 bytes

Interrupt Mask set. Writing logic 1 masks according interrupt. Writing logic 0 has no effect. Reading this register returns
logic 1 for each masked interrupt. If particular interrupt is masked, it won’t be captured in INT_STAT register when
internal conditions for this interrupt are met (e.g RX buffer is not empty for RXNEI).

Bit index 15 14 13 12 11 10 9 8
Field name Reserved INT_MASK_SET[11:8]
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name INT_MASK_SET[7:0]
Reset value 0 0 0 0 0 0 0 0

INT_MASK_SET Bit meaning is equivalent to register INT_STAT.

42

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.11 INT_MASK_CLR

Type: write-only

Offset: 0x20

Size: 2 bytes

Interrupt Mask clear register. Writing logic 1 un-masks according interrupt. Writing logic 0 has no effect. Reading
this register has no effect. If particular interrupt is un-masked, it will be captured in INT_STAT register when internal
conditions for this interrupt are met (e.g RX buffer is not empty for RXNEI).

Bit index 15 14 13 12 11 10 9 8
Field name Reserved INT_MASK_CLR[11:8]
Reset value - - - - 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name INT_MASK_CLR[7:0]
Reset value 0 0 0 0 0 0 0 0

INT_MASK_CLR Bit meaning is equivalent to register INT_STAT.

3.1.12 BTR

Type: read-write

Offset: 0x24

Size: 4 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Bit timing register for nominal bit rate.

Bit index 31 30 29 28 27 26 25 24
Field name SJW BRP[7:5]
Reset value 0 0 0 1 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BRP[4:0] PH2[5:3]
Reset value 0 1 0 1 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name PH2[2:0] PH1[5:1]
Reset value 1 0 1 0 0 0 0 1

Bit index 7 6 5 4 3 2 1 0
Field name PH1[0] PROP
Reset value 1 0 0 0 0 1 0 1

43

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

PROP Propagation segment

PH1 Phase 1 segment

PH2 Phase 2 segment

BRP Bit rate prescaler

SJW Synchronisation jump width

3.1.13 BTR_FD

Type: read-write

Offset: 0x28

Size: 4 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Bit timing register for data bit rate.

Bit index 31 30 29 28 27 26 25 24
Field name SJW_FD BRP_FD[7:5]
Reset value 0 0 0 1 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BRP_FD[4:0] Reserved PH2_FD[4:3]
Reset value 0 0 1 0 0 - 0 0

Bit index 15 14 13 12 11 10 9 8
Field name PH2_FD[2:0] Reserved PH1_FD[4:1]
Reset value 0 1 1 - 0 0 0 1

Bit index 7 6 5 4 3 2 1 0
Field name PH1_FD[0] Reserved PROP_FD
Reset value 1 - 0 0 0 0 1 1

PROP_FD Propagation segment

PH1_FD Phase 1 segment

PH2_FD Phase 2 segment

BRP_FD Bit rate prescaler

SJW_FD Synchronisation jump width

44

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.14 EWL

Type: read-write

Offset: 0x2C

Size: 1 byte

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Error warning limit register. This register shall be modified only when SETTINGS[ENA]=0.

Bit index 7 6 5 4 3 2 1 0
Field name EW_LIMIT
Reset value 0 1 1 0 0 0 0 0

EW_LIMIT Error warning limit. If error warning limit is reached interrupt can be generated. Error warning limit
indicates heavily disturbed bus.

3.1.15 ERP

Type: read-write

Offset: 0x2D

Size: 1 byte

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Error passive limit register. This register shall be modified only when SETTINGS[ENA]=0.

Bit index 7 6 5 4 3 2 1 0
Field name ERP_LIMIT
Reset value 1 0 0 0 0 0 0 0

ERP_LIMIT Error Passive Limit. When one of error counters (REC/TEC) exceeds this value, Fault confinement state
changes to error-passive.

3.1.16 FAULT_STATE

Type: read-only

Offset: 0x2E

Size: 2 bytes

Fault Confinement state of the CTU CAN FD.

45

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 15 14 13 12 11 10 9 8
Field name Reserved
Reset value - - - - - - - -

Bit index 7 6 5 4 3 2 1 0
Field name Reserved BOF ERP ERA
Reset value - - - - - 0 0 1

ERA Error-active

ERP Error-passive

BOF Bus-off

3.1.17 REC

Type: read-only

Offset: 0x30

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name Reserved REC_VAL[8]
Reset value - - - - - - - 0

Bit index 7 6 5 4 3 2 1 0
Field name REC_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

REC_VAL RX error counter (REC).

3.1.18 TEC

Type: read-only

Offset: 0x32

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name Reserved TEC_VAL[8]
Reset value - - - - - - - 0

Bit index 7 6 5 4 3 2 1 0
Field name TEC_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

TEC_VAL TX error counter (TEC).

46

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.19 ERR_NORM

Type: read-only

Offset: 0x34

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name ERR_NORM_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name ERR_NORM_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

ERR_NORM_VAL Number of errors which occured in nominal bit rate.

3.1.20 ERR_FD

Type: read-only

Offset: 0x36

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name ERR_FD_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name ERR_FD_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

ERR_FD_VAL Number of errors which occured in data bit rate.

3.1.21 CTR_PRES

Type: write-only

Offset: 0x38

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Counter preset register. Error counters can be modified via this register.

47

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved
Reset value - - - - - - - -

Bit index 15 14 13 12 11 10 9 8
Field name Reserved EFD ENORM PRX PTX CTPV[8]
Reset value - - - 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name CTPV[7:0]
Reset value 0 0 0 0 0 0 0 0

CTPV Counter value to set.

PTX Preset value from CTPV to TX Error counter (TEC).

PRX Preset value from CTPV to RX Error counter (REC).

ENORM Erase Nominal bit rate error counter (ERR_NORM).

EFD Erase Data bit rate error counter (ERR_FD).

3.1.22 FILTER_A_MASK

Type: read-write

Offset: 0x3C

Size: 4 bytes

Note: Register is present only when sup_filt_A = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_MASK_A_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_MASK_A_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_MASK_A_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

48

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name BIT_MASK_A_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_MASK_A_VAL Filter A mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.23 FILTER_A_VAL

Type: read-write

Offset: 0x40

Size: 4 bytes

Note: Register is present only when sup_filt_A = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_VAL_A_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_VAL_A_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_VAL_A_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_VAL_A_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_VAL_A_VAL Filter A value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX buffer.
If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.24 FILTER_B_MASK

Type: read-write

Offset: 0x44

Size: 4 bytes

Note: Register is present only when sup_filt_B = true. Otherwise this address is reserved.

49

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_MASK_B_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_MASK_B_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_MASK_B_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_MASK_B_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_MASK_B_VAL Filter B mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.25 FILTER_B_VAL

Type: read-write

Offset: 0x48

Size: 4 bytes

Note: Register is present only when sup_filt_B = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_VAL_B_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_VAL_B_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_VAL_B_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_VAL_B_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_VAL_B_VAL Filter B value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX buffer.
If filter A is not present, writes to this register have no effect and read will return all zeroes.

50

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.26 FILTER_C_MASK

Type: read-write

Offset: 0x4C

Size: 4 bytes

Note: Register is present only when sup_filt_C = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_MASK_C_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_MASK_C_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_MASK_C_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_MASK_C_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_MASK_C_VAL Filter C mask. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX
buffer. If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.27 FILTER_C_VAL

Type: read-write

Offset: 0x50

Size: 4 bytes

Note: Register is present only when sup_filt_C = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_VAL_C_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_VAL_C_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

51

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 15 14 13 12 11 10 9 8
Field name BIT_VAL_C_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_VAL_C_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_VAL_C_VAL Filter C value. The identifier format is the same as in IDENTIFIER_W of TXT buffer or RX buffer.
If filter A is not present, writes to this register have no effect and read will return all zeroes.

3.1.28 FILTER_RAN_LOW

Type: read-write

Offset: 0x54

Size: 4 bytes

Note: Register is present only when sup_range = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_RAN_LOW_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_RAN_LOW_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_RAN_LOW_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_RAN_LOW_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_RAN_LOW_VAL Filter Range Low threshold. The identifier format is the same as in IDENTIFIER_W of TXT
buffer or RX buffer. If Range filter is not supported, writes to this register have no effect and read will return all
zeroes.

52

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.29 FILTER_RAN_HIGH

Type: read-write

Offset: 0x58

Size: 4 bytes

Note: Register is present only when sup_range = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved BIT_RAN_HIGH_VAL[28:24]
Reset value - - - 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name BIT_RAN_HIGH_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name BIT_RAN_HIGH_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name BIT_RAN_HIGH_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

BIT_RAN_HIGH_VAL Range filter High threshold. The identifier format is the same as in IDENTIFIER_W of TXT
buffer or RX buffer. If Range filter is not supported, writes to this register have no effect and read will return all
zeroes.

3.1.30 FILTER_CONTROL

Type: read-write

Offset: 0x5C

Size: 2 bytes

Filter control register. Configures Frame filters to accept only selected frame types. Every bit is active in logic 1.

Bit index 15 14 13 12 11 10 9 8
Field name FRFE FRFB FRNE FRNB FCFE FCFB FCNE FCNB
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name FBFE FBFB FBNE FBNB FAFE FAFB FANE FANB
Reset value 0 0 0 0 1 1 1 1

53

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

FANB CAN Basic Frame is accepted by filter A.

FANE CAN Extended Frame is accepted by Filter A.

FAFB CAN FD Basic Frame is accepted by filter A.

FAFE CAN FD Extended Frame is accepted by filter A.

FBNB CAN Basic Frame is accepted by filter B.

FBNE CAN Extended Frame is accepted by Filter B.

FBFB CAN FD Basic Frame is accepted by filter B.

FBFE CAN FD Extended Frame is accepted by filter B.

FCNB CAN Basic Frame is accepted by filter C.

FCNE CAN Extended Frame is accepted by Filter C.

FCFB CAN FD Basic Frame is accepted by filter C.

FCFE CAN FD Extended Frame is accepted by filter C.

FRNB CAN Basic Frame is accepted by Range filter.

FRNE CAN Extended Frame is accepted by Range filter.

FRFB CAN FD Basic Frame is accepted by Range filter.

FRFE CAN FD Extended Frame is accepted by Range filter.

3.1.31 FILTER_STATUS

Type: read-only

Offset: 0x5E

Size: 2 bytes

Filter status indicates if frame filters are available in CTU CAN FD.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved
Reset value - - - - - - - -

Bit index 7 6 5 4 3 2 1 0
Field name Reserved SFR SFC SFB SFA
Reset value - - - - X X X X

SFA Logic 1 when Filter A is available. Otherwise logic 0.

SFB Logic 1 when Filter B is available. Otherwise logic 0.

SFC Logic 1 when Filter C is available. Otherwise logic 0.

SFR Logic 1 when Range Filter is available. Otherwise logic 0.

54

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.32 RX_MEM_INFO

Type: read-only

Offset: 0x60

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name Reserved RX_MEM_FREE[12:8]
Reset value - - - X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name RX_MEM_FREE[7:0]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name Reserved RX_BUFF_SIZE[12:8]
Reset value - - - X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name RX_BUFF_SIZE[7:0]
Reset value X X X X X X X X

RX_BUFF_SIZE Size of RX buffer in 32-bit words.

RX_MEM_FREE Number of free 32 bit words in RX buffer.

3.1.33 RX_POINTERS

Type: read-only

Offset: 0x64

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name Reserved RX_RPP[11:8]
Reset value - - - - 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name RX_RPP[7:0]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name Reserved RX_WPP[11:8]
Reset value - - - - 0 0 0 0

55

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name RX_WPP[7:0]
Reset value 0 0 0 0 0 0 0 0

RX_WPP Write pointer position in RX buffer. Upon store of received frame write pointer is updated.

RX_RPP Read pointer position in RX buffer. Upon read of received frame read pointer is updated.

3.1.34 RX_STATUS

Type: read-only

Offset: 0x68

Size: 2 bytes

Bit index 15 14 13 12 11 10 9 8
Field name Reserved RXFRC[10:4]
Reset value - 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name RXFRC[3:0] Reserved RXMOF RXF RXE
Reset value 0 0 0 0 - 0 0 1

RXE RX buffer is empty. There is no CAN Frame stored in it.

RXF RX buffer is full, all memory words of RX buffer are occupied.

RXMOF RX Buffer middle of frame. When RXMOF = 1, next read from RX_DATA register will return other than first
word (FRAME_FORMAT_W) of CAN frame.

RXFRC RX buffer frame count. Number of CAN frames stored in RX buffer.

3.1.35 RX_SETTINGS

Type: read-write

Offset: 0x6A

Size: 1 byte

Settings of RX buffer FIFO.

Bit index 7 6 5 4 3 2 1 0
Field name Reserved RTSOP
Reset value - - - - - - - 0

RTSOP Receive buffer timestamp option. This register should be modified only when SETTINGS[ENA]=0.
0b0 - RTS_END - Timestamp of received frame in RX FIFO is captured in last bit of EOF field.
0b1 - RTS_BEG - Timestamp of received frame in RX FIFO is captured in SOF field.

56

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.36 RX_DATA

Type: read-only

Offset: 0x6C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name RX_DATA[31:24]
Reset value 0 0 0 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name RX_DATA[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name RX_DATA[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name RX_DATA[7:0]
Reset value 0 0 0 0 0 0 0 0

RX_DATA RX buffer data at read pointer position in FIFO. By reading from this register, read pointer is automatically
incremented if MODES[RXBAM]=1 and RX Buffer is not empty. If MODE[RXBAM]=1, this register must be read
by 32 bit access. Upon read from this register, STATUS[RXPE] is set if there is parity error detected in RX Buffer
word which is being read.

3.1.37 TX_STATUS

Type: read-only

Offset: 0x70

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name TX8S TX7S
Reset value 1 0 0 0 1 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name TX6S TX5S
Reset value 1 0 0 0 1 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name TX4S TX3S
Reset value 1 0 0 0 1 0 0 0

57

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name TX2S TX1S
Reset value 1 0 0 0 1 0 0 0

TX1S Status of TXT buffer 1.
0b0000 - TXT_NOT_EXIST - TXT buffer does not exist in the core (applies only to TXT buffers 3-8, when CTU
CAN FD was synthesized with less than 8 TXT buffers).
0b0001 - TXT_RDY - TXT buffer is in "Ready" state, it is waiting for CTU CAN FD to start transmission from it.
0b0010 - TXT_TRAN - TXT buffer is in "TX in progress" state. CTU CAN FD is transmitting frame.
0b0011 - TXT_ABTP - TXT buffer is in "Abort in progress" state.
0b0100 - TXT_TOK - TXT buffer is in "TX OK" state.
0b0110 - TXT_ERR - TXT buffer is in "Failed" state.
0b0111 - TXT_ABT - TXT buffer is in "Aborted" state.
0b1000 - TXT_ETY - TXT buffer is in "Empty" state.
0b1001 - TXT_PER - TXT Buffer is in "Parity Error" state. CTU CAN FD detected parity error on this buffer.

TX2S Status of TXT buffer 2. Bit field meaning is analogous to TX1S.

TX3S Status of TXT buffer 3. Bit field meaning is analogous to TX1S.

TX4S Status of TXT buffer 4. Bit field meaning is analogous to TX1S.

TX5S Status of TXT buffer 5. Bit field meaning is analogous to TX1S.

TX6S Status of TXT buffer 6. Bit field meaning is analogous to TX1S.

TX7S Status of TXT buffer 7. Bit field meaning is analogous to TX1S.

TX8S Status of TXT buffer 8. Bit field meaning is analogous to TX1S.

3.1.38 TX_COMMAND

Type: write-only

Offset: 0x74

Size: 2 bytes

Command register for TXT buffers. Command is activated by writing logic 1 to TXC(E|R|A) bit. TXT buffer that receives
the command is selected by setting bit TXB[1-8] to logic 1. Command and index can be set by single access, or index can
be set in advance. TXC(E|R|A) bits are automatically erased upon the command completion. Reffer to description of
TXT buffer for meaning of commands. If TXCE and TXCR are applied simultaneously, only TXCE command is applied.
If multiple commands are applied at once, only those which have effect in immediate state of TXT buffer are applied to
the buffer.

Bit index 15 14 13 12 11 10 9 8
Field name TXB8 TXB7 TXB6 TXB5 TXB4 TXB3 TXB2 TXB1
Reset value 0 0 0 0 0 0 0 0

58

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TXCA TXCR TXCE
Reset value - - - - - 0 0 0

TXCE Issues "set empty" command.

TXCR Issues "set ready" command.

TXCA Issues "set abort" command.

TXB1 Command is issued to TXT Buffer 1.

TXB2 Command is issued to TXT Buffer 2.

TXB3 Command is issued to TXT Buffer 3. If number of TXT Buffers is less than 3, this field is reserved and has no
function.

TXB4 Command is issued to TXT Buffer 4. If number of TXT Buffers is less than 4, this field is reserved and has no
function.

TXB5 Command is issued to TXT Buffer 5. If number of TXT Buffers is less than 5, this field is reserved and has no
function.

TXB6 Command is issued to TXT Buffer 6. If number of TXT Buffers is less than 6, this field is reserved and has no
function.

TXB7 Command is issued to TXT Buffer 7. If number of TXT Buffers is less than 7, this field is reserved and has no
function.

TXB8 Command is issued to TXT Buffer 8. If number of TXT Buffers is less than 8, this field is reserved and has no
function.

3.1.39 TXTB_INFO

Type: read-only

Offset: 0x76

Size: 2 bytes

Register with information about supported features of TXT buffers.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved
Reset value - - - - - - - -

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TXT_BUFFER_COUNT
Reset value - - - - X X X X

TXT_BUFFER_COUNT Number of TXT buffers present in CTU CAN FD. Lowest buffer is always 1. Highest buffer
is at index equal to number of present buffers.

59

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.40 TX_PRIORITY

Type: read-write

Offset: 0x78

Size: 4 bytes

Priority of TXT buffers. Highest priority TXT buffer in "Ready" state is selected for transmission.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved TXT8P Reserved TXT7P
Reset value - 0 0 0 - 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name Reserved TXT6P Reserved TXT5P
Reset value - 0 0 0 - 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name Reserved TXT4P Reserved TXT3P
Reset value - 0 0 0 - 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TXT2P Reserved TXT1P
Reset value - 0 0 0 - 0 0 1

TXT1P Priority of TXT buffer 1.

TXT2P Priority of TXT buffer 2.

TXT3P Priority of TXT buffer 3. If number of TXT Buffers is less than 3, this field is reserved and has no function.

TXT4P Priority of TXT buffer 4. If number of TXT Buffers is less than 4, this field is reserved and has no function.

TXT5P Priority of TXT buffer 5. If number of TXT Buffers is less than 5, this field is reserved and has no function.

TXT6P Priority of TXT buffer 6. If number of TXT Buffers is less than 6, this field is reserved and has no function.

TXT7P Priority of TXT buffer 7. If number of TXT Buffers is less than 7, this field is reserved and has no function.

TXT8P Priority of TXT buffer 8. If number of TXT Buffers is less than 8, this field is reserved and has no function.

3.1.41 ERR_CAPT

Type: read-only

Offset: 0x7C

Size: 1 byte

60

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Error code capture register. Determines position within CAN frame where last error was detected.

Bit index 7 6 5 4 3 2 1 0
Field name ERR_TYPE ERR_POS
Reset value 0 0 0 1 1 1 1 1

ERR_POS Position of last error.
0b00000 - ERC_POS_SOF - Error in Start of Frame
0b00001 - ERC_POS_ARB - Error in Arbitration Filed
0b00010 - ERC_POS_CTRL - Error in Control field
0b00011 - ERC_POS_DATA - Error in Data Field
0b00100 - ERC_POS_CRC - Error in CRC Field
0b00101 - ERC_POS_ACK - Error in CRC delimiter, ACK field or ACK delimiter
0b00110 - ERC_POS_EOF - Error in End of frame field
0b00111 - ERC_POS_ERR - Error during Error frame
0b01000 - ERC_POS_OVRL - Error in Overload frame
0b11111 - ERC_POS_OTHER - Other position of error

ERR_TYPE Type of last error.
0b000 - ERC_BIT_ERR - Bit Error
0b001 - ERC_CRC_ERR - CRC Error
0b010 - ERC_FRM_ERR - Form Error
0b011 - ERC_ACK_ERR - Acknowledge Error
0b100 - ERC_STUF_ERR - Stuff Error
0b101 - ERC_PRT_ERR - Parity Error in TXT Buffer RAM DATA_1_4_W ... DATA_61_64_W words.

3.1.42 RETR_CTR

Type: read-only

Offset: 0x7D

Size: 1 byte

Current value of Retransmit counter.

Bit index 7 6 5 4 3 2 1 0
Field name Reserved RETR_CTR_VAL
Reset value - - - - 0 0 0 0

RETR_CTR_VAL Current value of retransmitt counter.

61

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.43 ALC

Type: read-only

Offset: 0x7E

Size: 1 byte

Arbitration lost capture register. Determines position of last arbitration loss within CAN frame.

Bit index 7 6 5 4 3 2 1 0
Field name ALC_ID_FIELD ALC_BIT
Reset value 0 0 0 0 0 0 0 0

ALC_BIT Arbitration lost capture bit position. If ALC_ID_FIELD = ALC_BASE_ID then bit index of BASE identifier
in which arbitration was lost is given as: 11 - ALC_VAL. If ALC_ID_FIELD = ALC_EXTENSION then bit index of
EXTENDED identifier in which arbitration was lost is given as: 18 - ALC_VAL. For other values of ALC_ID_FIELD,
this value is undefined.

ALC_ID_FIELD Part of CAN Identifier in which arbitration was lost.
0b000 - ALC_RSVD - Unit did not loose arbitration since last reset.
0b001 - ALC_BASE_ID - Arbitration was lost during base identifier.
0b010 - ALC_SRR_RTR - Arbitration was lost during first bit after base identifier (SRR of Extended Frame, RTR
bit of CAN 2.0 Base Frame)
0b011 - ALC_IDE - Arbitration was lost during IDE bit.
0b100 - ALC_EXTENSION - Arbitration was lost during Identifier extension.
0b101 - ALC_RTR - Arbitration was lost during RTR bit after Identifier extension!

3.1.44 TS_INFO

Type: read-only

Offset: 0x7F

Size: 1 byte

Timestamp integration information

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TS_BITS
Reset value - - X X X X X X

TS_BITS Number of active bits of CTU CAN FD time-base minus 1 (0x3F = 64 bit time-base).

62

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.45 TRV_DELAY

Type: read-only

Offset: 0x80

Size: 2 bytes

Transmitter delay register. When transmitting CAN FD Frame, Transmitter delay is measured. After the measurement
(after FDF bit), it can be read out from this register. The value in this register is valid since first transmission of CAN
FD frame. After each next measurement the value is updated.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved
Reset value - - - - - - - -

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TRV_DELAY_VALUE
Reset value - 0 0 0 0 0 0 0

TRV_DELAY_VALUE Measured Transmitter delay in multiple of minimal Time quanta.

3.1.46 SSP_CFG

Type: read-write

Offset: 0x82

Size: 2 bytes

Note: Register can be only written when SETTINGS[ENA] = 0, otherwise write has no effect.

Secondary sampling point configuration register. Used by transmitter in data bit rate for calculation of Secondary sampling
point.

Bit index 15 14 13 12 11 10 9 8
Field name Reserved SSP_SRC
Reset value - - - - - - 0 0

Bit index 7 6 5 4 3 2 1 0
Field name SSP_OFFSET
Reset value 0 0 0 0 1 0 1 0

SSP_OFFSET Secondary sampling point offset. Value is given as multiple of minimal Time quanta.

SSP_SRC Source of Secondary sampling point.
0b00 - SSP_SRC_MEAS_N_OFFSET - SSP position = TRV_DELAY (Measured Transmitter delay) + SSP_OFFSET.
0b01 - SSP_SRC_NO_SSP - SSP is not used. Transmitter uses regular Sampling Point during data bit rate.
0b10 - SSP_SRC_OFFSET - SSP position = SSP_OFFSET. Measured Transmitter delay value is ignored.

63

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.47 RX_FR_CTR

Type: read-only

Offset: 0x84

Size: 4 bytes

Note: Register is present only when sup_traffic_ctrs = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name RX_FR_CTR_VAL[31:24]
Reset value 0 0 0 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name RX_FR_CTR_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name RX_FR_CTR_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name RX_FR_CTR_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

RX_FR_CTR_VAL Number of received frames by CTU CAN FD.

3.1.48 TX_FR_CTR

Type: read-only

Offset: 0x88

Size: 4 bytes

Note: Register is present only when sup_traffic_ctrs = true. Otherwise this address is reserved.

Bit index 31 30 29 28 27 26 25 24
Field name TX_FR_CTR_VAL[31:24]
Reset value 0 0 0 0 0 0 0 0

Bit index 23 22 21 20 19 18 17 16
Field name TX_FR_CTR_VAL[23:16]
Reset value 0 0 0 0 0 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name TX_FR_CTR_VAL[15:8]
Reset value 0 0 0 0 0 0 0 0

64

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 7 6 5 4 3 2 1 0
Field name TX_FR_CTR_VAL[7:0]
Reset value 0 0 0 0 0 0 0 0

TX_FR_CTR_VAL Number of transmitted frames by CTU CAN FD.

3.1.49 DEBUG_REGISTER

Type: read-only

Offset: 0x8C

Size: 4 bytes

Register for reading state of the controller. This register is only for debugging purposes!

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved PC_SOF PC_OVR PC_SUSP
Reset value - - - - - 0 0 0

Bit index 15 14 13 12 11 10 9 8
Field name PC_INT PC_EOF PC_ACKD PC_ACK PC_CRCD PC_CRC PC_STC PC_DAT
Reset value 0 0 0 0 0 0 0 0

Bit index 7 6 5 4 3 2 1 0
Field name PC_CON PC_ARB DESTUFF_COUNT STUFF_COUNT
Reset value 0 0 0 0 0 0 0 0

STUFF_COUNT Actual stuff count modulo 8 as definned in ISO FD protocol. Stuff count is erased in the beginning
of CAN frame and increased by one with each stuff bit until Stuff count field in ISO FD frame. Then it stays fixed
until the beginning of next frame. In non-ISO FD or normal CAN stuff bits are counted until the end of a frame.
Note that this field is NOT gray encoded as defined in ISO FD standard. Stuff count is calculated only as long as
controller is transceiving on the bus. During the reception this value remains fixed!

DESTUFF_COUNT Actual de-stuff count modulo 8 as defined in ISO FD protocol. De-Stuff count is erased in the
beginning of the frame and increased by one with each de-stuffed bit until Stuff count field in ISO FD Frame. Then
it stays fixed until beginning of next frame. In non-ISO FD or normal CAN de-stuff bits are counted until the end
of the frame. Note that this field is NOT grey encoded as defined in ISO FD standard. De-stuff count is calculated
in both. Transceiver as well as receiver.

PC_ARB Protocol control state machine is in Arbitration field.

PC_CON Protocol control state machine is in Control field.

65

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

PC_DAT Protocol control state machine is in Data field.

PC_STC Protocol control state machine is in Stuff Count field.

PC_CRC Protocol control state machine is in CRC field.

PC_CRCD Protocol control state machine is in CRC Delimiter field.

PC_ACK Protocol control state machine is in ACK field.

PC_ACKD Protocol control state machine is in ACK Delimiter field.

PC_EOF Protocol control state machine is in End of file field.

PC_INT Protocol control state machine is in Intermission field.

PC_SUSP Protocol control state machine is in Suspend transmission field.

PC_OVR Protocol control state machine is in Overload field.

PC_SOF Protocol control state machine is in Start of frame field.

3.1.50 YOLO_REG

Type: read-only

Offset: 0x90

Size: 4 bytes

Register for fun :)

Bit index 31 30 29 28 27 26 25 24
Field name YOLO_VAL[31:24]
Reset value 1 1 0 1 1 1 1 0

Bit index 23 22 21 20 19 18 17 16
Field name YOLO_VAL[23:16]
Reset value 1 0 1 0 1 1 0 1

Bit index 15 14 13 12 11 10 9 8
Field name YOLO_VAL[15:8]
Reset value 1 0 1 1 1 1 1 0

Bit index 7 6 5 4 3 2 1 0
Field name YOLO_VAL[7:0]
Reset value 1 1 1 0 1 1 1 1

YOLO_VAL What else could be in this register??

66

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.1.51 TIMESTAMP_LOW

Type: read-only

Offset: 0x94

Size: 4 bytes

Register with current value of CTU CAN FD time base. No shadowing is implemented on TIMESTAMP_LOW/HIGH
registers and user has to take care of proper read from both registers, since overflow of TIMESTAMP_LOW might occur
between read of TIMESTAMP_LOW and TIMESTAMP_HIGH.

Bit index 31 30 29 28 27 26 25 24
Field name TIMESTAMP_LOW[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TIMESTAMP_LOW[23:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TIMESTAMP_LOW[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TIMESTAMP_LOW[7:0]
Reset value X X X X X X X X

TIMESTAMP_LOW Bits 31:0 of time base.

3.1.52 TIMESTAMP_HIGH

Type: read-only

Offset: 0x98

Size: 4 bytes

Register with current value of CTU CAN FD time base. No shadowing is implemented on TIMESTAMP_LOW/HIGH
registers and user has to take care of proper read from both registers, since overflow of TIMESTAMP_LOW might occur
between read of TIMESTAMP_LOW and TIMESTAMP_HIGH.

Bit index 31 30 29 28 27 26 25 24
Field name TIMESTAMP_HIGH[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TIMESTAMP_HIGH[23:16]
Reset value X X X X X X X X

67

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Bit index 15 14 13 12 11 10 9 8
Field name TIMESTAMP_HIGH[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TIMESTAMP_HIGH[7:0]
Reset value X X X X X X X X

TIMESTAMP_HIGH Bits 63:32 of time base.

68

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.2 TXT Buffer 1

Access to this memory region is mapped to TXT buffer 1. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB1_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB1_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB1_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB1_DATA_1 0x100
TXTB1_DATA_2 0x104
TXTB1_DATA_3 0x108
TXTB1_DATA_4 0x10C
TXTB1_DATA_5 0x110
TXTB1_DATA_6 0x114
TXTB1_DATA_7 0x118
TXTB1_DATA_8 0x11C
TXTB1_DATA_9 0x120
TXTB1_DATA_10 0x124
TXTB1_DATA_11 0x128
TXTB1_DATA_12 0x12C
TXTB1_DATA_13 0x130
TXTB1_DATA_14 0x134
TXTB1_DATA_15 0x138
TXTB1_DATA_16 0x13C
TXTB1_DATA_17 0x140
TXTB1_DATA_18 0x144
TXTB1_DATA_19 0x148
TXTB1_DATA_20 0x14C
TXTB1_DATA_21 0x150

Reserved ...

69

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.3 TXT Buffer 2

Access to this memory region is mapped to TXT buffer 2. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB2_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB2_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB2_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB2_DATA_1 0x200
TXTB2_DATA_2 0x204
TXTB2_DATA_3 0x208
TXTB2_DATA_4 0x20C
TXTB2_DATA_5 0x210
TXTB2_DATA_6 0x214
TXTB2_DATA_7 0x218
TXTB2_DATA_8 0x21C
TXTB2_DATA_9 0x220
TXTB2_DATA_10 0x224
TXTB2_DATA_11 0x228
TXTB2_DATA_12 0x22C
TXTB2_DATA_13 0x230
TXTB2_DATA_14 0x234
TXTB2_DATA_15 0x238
TXTB2_DATA_16 0x23C
TXTB2_DATA_17 0x240
TXTB2_DATA_18 0x244
TXTB2_DATA_19 0x248
TXTB2_DATA_20 0x24C
TXTB2_DATA_21 0x250

Reserved ...

70

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.4 TXT Buffer 3

Access to this memory region is mapped to TXT buffer 3. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB3_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB3_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB3_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB3_DATA_1 0x300
TXTB3_DATA_2 0x304
TXTB3_DATA_3 0x308
TXTB3_DATA_4 0x30C
TXTB3_DATA_5 0x310
TXTB3_DATA_6 0x314
TXTB3_DATA_7 0x318
TXTB3_DATA_8 0x31C
TXTB3_DATA_9 0x320
TXTB3_DATA_10 0x324
TXTB3_DATA_11 0x328
TXTB3_DATA_12 0x32C
TXTB3_DATA_13 0x330
TXTB3_DATA_14 0x334
TXTB3_DATA_15 0x338
TXTB3_DATA_16 0x33C
TXTB3_DATA_17 0x340
TXTB3_DATA_18 0x344
TXTB3_DATA_19 0x348
TXTB3_DATA_20 0x34C
TXTB3_DATA_21 0x350

Reserved ...

71

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.5 TXT Buffer 4

Access to this memory region is mapped to TXT buffer 4. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB4_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB4_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB4_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB4_DATA_1 0x400
TXTB4_DATA_2 0x404
TXTB4_DATA_3 0x408
TXTB4_DATA_4 0x40C
TXTB4_DATA_5 0x410
TXTB4_DATA_6 0x414
TXTB4_DATA_7 0x418
TXTB4_DATA_8 0x41C
TXTB4_DATA_9 0x420
TXTB4_DATA_10 0x424
TXTB4_DATA_11 0x428
TXTB4_DATA_12 0x42C
TXTB4_DATA_13 0x430
TXTB4_DATA_14 0x434
TXTB4_DATA_15 0x438
TXTB4_DATA_16 0x43C
TXTB4_DATA_17 0x440
TXTB4_DATA_18 0x444
TXTB4_DATA_19 0x448
TXTB4_DATA_20 0x44C
TXTB4_DATA_21 0x450

Reserved ...

72

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.6 TXT Buffer 5

Access to this memory region is mapped to TXT buffer 5. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB5_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB5_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB5_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB5_DATA_1 0x500
TXTB5_DATA_2 0x504
TXTB5_DATA_3 0x508
TXTB5_DATA_4 0x50C
TXTB5_DATA_5 0x510
TXTB5_DATA_6 0x514
TXTB5_DATA_7 0x518
TXTB5_DATA_8 0x51C
TXTB5_DATA_9 0x520
TXTB5_DATA_10 0x524
TXTB5_DATA_11 0x528
TXTB5_DATA_12 0x52C
TXTB5_DATA_13 0x530
TXTB5_DATA_14 0x534
TXTB5_DATA_15 0x538
TXTB5_DATA_16 0x53C
TXTB5_DATA_17 0x540
TXTB5_DATA_18 0x544
TXTB5_DATA_19 0x548
TXTB5_DATA_20 0x54C
TXTB5_DATA_21 0x550

Reserved ...

73

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.7 TXT Buffer 6

Access to this memory region is mapped to TXT buffer 6. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB6_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB6_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB6_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB6_DATA_1 0x600
TXTB6_DATA_2 0x604
TXTB6_DATA_3 0x608
TXTB6_DATA_4 0x60C
TXTB6_DATA_5 0x610
TXTB6_DATA_6 0x614
TXTB6_DATA_7 0x618
TXTB6_DATA_8 0x61C
TXTB6_DATA_9 0x620
TXTB6_DATA_10 0x624
TXTB6_DATA_11 0x628
TXTB6_DATA_12 0x62C
TXTB6_DATA_13 0x630
TXTB6_DATA_14 0x634
TXTB6_DATA_15 0x638
TXTB6_DATA_16 0x63C
TXTB6_DATA_17 0x640
TXTB6_DATA_18 0x644
TXTB6_DATA_19 0x648
TXTB6_DATA_20 0x64C
TXTB6_DATA_21 0x650

Reserved ...

74

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.8 TXT Buffer 7

Access to this memory region is mapped to TXT buffer 7. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB7_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB7_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB7_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB7_DATA_1 0x700
TXTB7_DATA_2 0x704
TXTB7_DATA_3 0x708
TXTB7_DATA_4 0x70C
TXTB7_DATA_5 0x710
TXTB7_DATA_6 0x714
TXTB7_DATA_7 0x718
TXTB7_DATA_8 0x71C
TXTB7_DATA_9 0x720
TXTB7_DATA_10 0x724
TXTB7_DATA_11 0x728
TXTB7_DATA_12 0x72C
TXTB7_DATA_13 0x730
TXTB7_DATA_14 0x734
TXTB7_DATA_15 0x738
TXTB7_DATA_16 0x73C
TXTB7_DATA_17 0x740
TXTB7_DATA_18 0x744
TXTB7_DATA_19 0x748
TXTB7_DATA_20 0x74C
TXTB7_DATA_21 0x750

Reserved ...

75

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.9 TXT Buffer 8

Access to this memory region is mapped to TXT buffer 8. CAN FD frame for transmittion can be inserted to this
buffer. The frame layout corresponds to the layout described in Chapter "CAN FD frame format". First adress in this
region (TXTB8_DATA_1) corresponds to FRAME_FORMAT_W, second address (TXTB8_DATA_2) corresponds to
IDENTIFIER_W etc. The last address (TXTB8_DATA_20) corresponds to DATA_61_64_W. The adresses in between
correspond linearly. This memory region is write only and read access will return all zeroes. This region is write only.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TXTB8_DATA_1 0x800
TXTB8_DATA_2 0x804
TXTB8_DATA_3 0x808
TXTB8_DATA_4 0x80C
TXTB8_DATA_5 0x810
TXTB8_DATA_6 0x814
TXTB8_DATA_7 0x818
TXTB8_DATA_8 0x81C
TXTB8_DATA_9 0x820
TXTB8_DATA_10 0x824
TXTB8_DATA_11 0x828
TXTB8_DATA_12 0x82C
TXTB8_DATA_13 0x830
TXTB8_DATA_14 0x834
TXTB8_DATA_15 0x838
TXTB8_DATA_16 0x83C
TXTB8_DATA_17 0x840
TXTB8_DATA_18 0x844
TXTB8_DATA_19 0x848
TXTB8_DATA_20 0x84C
TXTB8_DATA_21 0x850

Reserved ...

76

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.10 Test registers

Test registers memory region. Contains registers with manufacturing testability features.

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

TST_CONTROL 0x900
TST_DEST 0x904

TST_WDATA 0x908
TST_RDATA 0x90C

Reserved ...

3.10.1 TST_CONTROL

Type: read-write

Offset: 0x900

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Testability control register. Contains configuration of test functions.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved
Reset value - - - - - - - -

Bit index 15 14 13 12 11 10 9 8
Field name Reserved
Reset value - - - - - - - -

Bit index 7 6 5 4 3 2 1 0
Field name Reserved TWRSTB TMAENA
Reset value - - - - - - X X

TMAENA Enable test access to CTU CAN FD memories.

TWRSTB Writing 1 executes write acess to a memory/address given by TST_DEST register. 0 does not need to be
written, this bit is cleared automatically.

77

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

3.10.2 TST_DEST

Type: read-write

Offset: 0x904

Size: 4 bytes

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved TST_MTGT
Reset value - - - - X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TST_ADDR[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TST_ADDR[7:0]
Reset value X X X X X X X X

TST_ADDR Address for test memory access within tested memory.

TST_MTGT Target memory to be accessed.
0b0000 - TMTGT_NONE - No target memory is selected for test access.
0b0001 - TMTGT_RXBUF - RX buffer memory is selected for test access.
0b0010 - TMTGT_TXTBUF1 - TXT buffer 1 memory is selected for test access.
0b0011 - TMTGT_TXTBUF2 - TXT buffer 2 memory is selected for test access.
0b0100 - TMTGT_TXTBUF3 - TXT buffer 3 memory is selected for test access.
0b0101 - TMTGT_TXTBUF4 - TXT buffer 4 memory is selected for test access.
0b0110 - TMTGT_TXTBUF5 - TXT buffer 5 memory is selected for test access.
0b0111 - TMTGT_TXTBUF6 - TXT buffer 6 memory is selected for test access.
0b1000 - TMTGT_TXTBUF7 - TXT buffer 7 memory is selected for test access.
0b1001 - TMTGT_TXTBUF8 - TXT buffer 8 memory is selected for test access.

3.10.3 TST_WDATA

Type: read-write

Offset: 0x908

Size: 4 bytes

78

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

3. CAN FD CORE MEMORY MAP

Note: Register can be only written when MODE[TSTM] = 1, otherwise write has no effect.

Bit index 31 30 29 28 27 26 25 24
Field name TST_WDATA[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TST_WDATA[23:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TST_WDATA[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TST_WDATA[7:0]
Reset value X X X X X X X X

TST_WDATA Write data for test access.

3.10.4 TST_RDATA

Type: read-only

Offset: 0x90C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name TST_RDATA[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TST_RDATA[23:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TST_RDATA[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TST_RDATA[7:0]
Reset value X X X X X X X X

TST_RDATA Read data for test access.

79

4. CAN FD frame format

CAN Frame format describtion as it is stored in TXT Buffers and RX Buffer.

80

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1 CAN FD Frame format

Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0] Address
offset

FRAME_FORMAT_W 0x0
IDENTIFIER_W 0x4

TIMESTAMP_L_W 0x8
TIMESTAMP_U_W 0xC

DATA_1_4_W 0x10
DATA_5_8_W 0x14
DATA_9_12_W 0x18
DATA_13_16_W 0x1C
DATA_17_20_W 0x20
DATA_21_24_W 0x24
DATA_25_28_W 0x28
DATA_29_32_W 0x2C
DATA_33_36_W 0x30
DATA_37_40_W 0x34
DATA_41_44_W 0x38
DATA_45_48_W 0x3C
DATA_49_52_W 0x40
DATA_53_56_W 0x44
DATA_57_60_W 0x48
DATA_61_64_W 0x4C

FRAME_TEST_W 0x50

4.1.1 FRAME_FORMAT_W

Type:

Offset: 0x0

Size: 4 bytes

Frame format word with CAN frame metadata.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved
Reset value - - - - - - - -

81

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name RWCNT ESI_RSV BRS Reserved
Reset value X X X X X X X -

Bit index 7 6 5 4 3 2 1 0
Field name FDF IDE RTR Reserved DLC
Reset value X X X - X X X X

DLC Data Length Code.

RTR Logic 1 indicates Remote frame. Has meaning only for CAN frames. CAN FD does not have RTR frames.
0b0 - NO_RTR_FRAME - CAN frame is not RTR frame.
0b1 - RTR_FRAME - CAN frame is RTR frame.

IDE Extended Identifier Type. Logic 1 indicates CAN frame with both Base identifier and Identifier extension. Logic 0
indicates CAN frame with only Base identifier.
0b0 - BASE - Frame Identifier is Basic (11 bits)
0b1 - EXTENDED - Frame Identifier is Extended (11 + 18 bits)

FDF Flexible Data-rate Format. Distinguishes between CAN 2.0 and CAN FD Frames.
0b0 - NORMAL_CAN - Frame is CAN frame.
0b1 - FD_CAN - Frame is CAN FD frame.

BRS Bit Rate Shift. In case of CAN FD frames indicates whether bit rate is shifted CAN FD frame. This bit has no
meaning for CAN frames.
0b0 - BR_NO_SHIFT - Bit rate should not be shifted if frame is CAN FD frame.
0b1 - BR_SHIFT - Bit rate should be shifted if frame is CAN FD frame.

ESI_RSV Error State Indicator bit for received CAN FD frames. Bit has no meaning for CAN frames nor for transmitted
CAN FD frames (in TXT buffer).
0b0 - ESI_ERR_ACTIVE - Transmitted of received CAN FD frame is error active.
0b1 - ESI_ERR_PASIVE - Transmitted of received CAN FD frame is error passive.

RWCNT Size of CAN frame in RX buffer without FRAME_FORMAT WORD. (E.g RTR frame RWCNT=3, 64 Byte
FD frame RWCNT=19). In TXT buffer this field has no meaning.

4.1.2 IDENTIFIER_W

Type:

Offset: 0x4

Size: 4 bytes

CAN Identifier.

Bit index 31 30 29 28 27 26 25 24
Field name Reserved IDENTIFIER_BASE[10:6]
Reset value - - - X X X X X

82

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 23 22 21 20 19 18 17 16
Field name IDENTIFIER_BASE[5:0] IDENTIFIER_EXT[17:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name IDENTIFIER_EXT[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name IDENTIFIER_EXT[7:0]
Reset value X X X X X X X X

IDENTIFIER_EXT Extended Identifier of CAN frame. Has meaning only if IDE of FRAME_FORMAT_W is EX-
TENDED.

IDENTIFIER_BASE Base Identifier of CAN frame.

4.1.3 TIMESTAMP_L_W

Type:

Offset: 0x8

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name TIME_STAMP_L_W[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TIME_STAMP_L_W[23:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TIME_STAMP_L_W[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TIME_STAMP_L_W[7:0]
Reset value X X X X X X X X

TIME_STAMP_L_W Lower 32 bits of timestamp when the frame should be transmitted or when it was received.

83

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.4 TIMESTAMP_U_W

Type:

Offset: 0xC

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name TIMESTAMP_U_W[31:24]
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name TIMESTAMP_U_W[23:16]
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name TIMESTAMP_U_W[15:8]
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name TIMESTAMP_U_W[7:0]
Reset value X X X X X X X X

TIMESTAMP_U_W Upper 32 bits of timestamp when the frame should be transmitted or when it was received.

4.1.5 DATA_1_4_W

Type:

Offset: 0x10

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_4
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_3
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_2
Reset value X X X X X X X X

84

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 7 6 5 4 3 2 1 0
Field name DATA_1
Reset value X X X X X X X X

DATA_1 Data byte 1 of CAN Frame.

DATA_2 Data byte 2 of CAN Frame.

DATA_3 Data byte 3 of CAN Frame.

DATA_4 Data byte 4 of CAN Frame.

4.1.6 DATA_5_8_W

Type:

Offset: 0x14

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_8
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_7
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_6
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_5
Reset value X X X X X X X X

DATA_5 Data byte 5 of CAN Frame.

DATA_6 Data byte 6 of CAN Frame.

DATA_7 Data byte 7 of CAN Frame.

DATA_8 Data byte 8 of CAN Frame.

85

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.7 DATA_9_12_W

Type:

Offset: 0x18

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_12
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_11
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_10
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_9
Reset value X X X X X X X X

DATA_9 Data byte 9 of CAN Frame.

DATA_10 Data byte 10 of CAN Frame.

DATA_11 Data byte 11 of CAN Frame.

DATA_12 Data byte 12 of CAN Frame.

4.1.8 DATA_13_16_W

Type:

Offset: 0x1C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_16
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_15
Reset value X X X X X X X X

86

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name DATA_14
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_13
Reset value X X X X X X X X

DATA_13 Data byte 13 of CAN Frame.

DATA_14 Data byte 14 of CAN Frame.

DATA_15 Data byte 15 of CAN Frame.

DATA_16 Data byte 16 of CAN Frame.

4.1.9 DATA_17_20_W

Type:

Offset: 0x20

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_20
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_19
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_18
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_17
Reset value X X X X X X X X

DATA_17 Data byte 17 of CAN Frame.

DATA_18 Data byte 18 of CAN Frame.

DATA_19 Data byte 19 of CAN Frame.

DATA_20 Data byte 20 of CAN Frame.

87

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.10 DATA_21_24_W

Type:

Offset: 0x24

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_24
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_23
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_22
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_21
Reset value X X X X X X X X

DATA_21 Data byte 21 of CAN Frame.

DATA_22 Data byte 22 of CAN Frame.

DATA_23 Data byte 23 of CAN Frame.

DATA_24 Data byte 24 of CAN Frame.

4.1.11 DATA_25_28_W

Type:

Offset: 0x28

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_28
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_27
Reset value X X X X X X X X

88

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name DATA_26
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_25
Reset value X X X X X X X X

DATA_25 Data byte 25 of CAN Frame.

DATA_26 Data byte 26 of CAN Frame.

DATA_27 Data byte 27 of CAN Frame.

DATA_28 Data byte 28 of CAN Frame.

4.1.12 DATA_29_32_W

Type:

Offset: 0x2C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_32
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_31
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_30
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_29
Reset value X X X X X X X X

DATA_29 Data byte 29 of CAN Frame.

DATA_30 Data byte 30 of CAN Frame.

DATA_31 Data byte 31 of CAN Frame.

DATA_32 Data byte 32 of CAN Frame.

89

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.13 DATA_33_36_W

Type:

Offset: 0x30

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_36
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_35
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_34
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_33
Reset value X X X X X X X X

DATA_33 Data byte 33 of CAN Frame.

DATA_34 Data byte 34 of CAN Frame.

DATA_35 Data byte 35 of CAN Frame.

DATA_36 Data byte 36 of CAN Frame.

4.1.14 DATA_37_40_W

Type:

Offset: 0x34

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_40
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_39
Reset value X X X X X X X X

90

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name DATA_38
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_37
Reset value X X X X X X X X

DATA_37 Data byte 37 of CAN Frame.

DATA_38 Data byte 38 of CAN Frame.

DATA_39 Data byte 39 of CAN Frame.

DATA_40 Data byte 40 of CAN Frame.

4.1.15 DATA_41_44_W

Type:

Offset: 0x38

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_44
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_43
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_42
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_41
Reset value X X X X X X X X

DATA_41 Data byte 41 of CAN Frame.

DATA_42 Data byte 42 of CAN Frame.

DATA_43 Data byte 43 of CAN Frame.

DATA_44 Data byte 44 of CAN Frame.

91

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.16 DATA_45_48_W

Type:

Offset: 0x3C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_48
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_47
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_46
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_45
Reset value X X X X X X X X

DATA_45 Data byte 45 of CAN Frame.

DATA_46 Data byte 46 of CAN Frame.

DATA_47 Data byte 47 of CAN Frame.

DATA_48 Data byte 48 of CAN Frame.

4.1.17 DATA_49_52_W

Type:

Offset: 0x40

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_52
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_51
Reset value X X X X X X X X

92

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name DATA_50
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_49
Reset value X X X X X X X X

DATA_49 Data byte 49 of CAN Frame.

DATA_50 Data byte 50 of CAN Frame.

DATA_51 Data byte 51 of CAN Frame.

DATA_52 Data byte 52 of CAN Frame.

4.1.18 DATA_53_56_W

Type:

Offset: 0x44

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_54
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_55
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_56
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_53
Reset value X X X X X X X X

DATA_53 Data byte 53 of CAN Frame.

DATA_56 Data byte 56 of CAN Frame.

DATA_55 Data byte 55 of CAN Frame.

DATA_54 Data byte 54 of CAN Frame.

93

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

4.1.19 DATA_57_60_W

Type:

Offset: 0x48

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_60
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_59
Reset value X X X X X X X X

Bit index 15 14 13 12 11 10 9 8
Field name DATA_58
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_57
Reset value X X X X X X X X

DATA_57 Data byte 57 of CAN Frame.

DATA_58 Data byte 58 of CAN Frame.

DATA_59 Data byte 59 of CAN Frame.

DATA_60 Data byte 60 of CAN Frame.

4.1.20 DATA_61_64_W

Type:

Offset: 0x4C

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name DATA_64
Reset value X X X X X X X X

Bit index 23 22 21 20 19 18 17 16
Field name DATA_63
Reset value X X X X X X X X

94

CTU CAN FD IP Core - Datasheet
Version 2.5, Commit:Datasheet v2.5, 2023-12-15

4. CAN FD FRAME FORMAT

Bit index 15 14 13 12 11 10 9 8
Field name DATA_62
Reset value X X X X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name DATA_61
Reset value X X X X X X X X

DATA_61 Data byte 61 of CAN Frame.

DATA_62 Data byte 62 of CAN Frame.

DATA_63 Data byte 63 of CAN Frame.

DATA_64 Data byte 64 of CAN Frame.

4.1.21 FRAME_TEST_W

Type:

Offset: 0x50

Size: 4 bytes

Bit index 31 30 29 28 27 26 25 24
Field name Reserved
Reset value - - - - - - - -

Bit index 23 22 21 20 19 18 17 16
Field name Reserved
Reset value - - - - - - - -

Bit index 15 14 13 12 11 10 9 8
Field name Reserved TPRM
Reset value - - - X X X X X

Bit index 7 6 5 4 3 2 1 0
Field name Reserved SDLC FCRC FSTC
Reset value - - - - - X X X

FSTC Flip Stuff count field bit when this frame is transmitted. This field has effect only in transmitted frames.

FCRC Flip CRC field bit when this frame is transmitted. This field has effect only in transmitted frames.

SDLC Swap DLC in transmitted frame.

TPRM Test Parameter

95

Bibliography

[1] CTU CAN FD, System architecture.

96

	Format
	1 Introduction
	1.1 General overview
	1.2 Features
	1.3 License
	1.4 Source code access
	1.5 Block diagram
	1.6 Implementation parameters
	1.7 Configuration parameters

	2 Functional description
	2.1 Clock
	2.2 Reset
	2.3 Memory organization
	2.4 Time base
	2.5 Operating modes
	2.6 Initialization sequence
	2.7 De-initialization sequence
	2.8 CAN bus configuration
	2.8.1 Bit rate
	500 Kbit / 2 Mbit example

	2.8.2 Transmitter delay
	2.8.3 Secondary sampling point
	2.8.4 CAN FD support
	2.8.5 Protocol exception handling
	2.8.6 Implementation type
	2.8.7 Minimum bit time / Maximal bit rate

	2.9 CAN frame transmission
	2.9.1 TXT buffer selection
	2.9.2 Time triggered transmission mode
	2.9.3 Type of transmitted CAN frame
	2.9.4 Retransmitt limitation
	2.9.5 Abort
	2.9.6 TXT buffer - Bus-off behavior
	2.9.7 Sample code

	2.10 CAN frame reception
	2.10.1 Frame count
	2.10.2 RX buffer memory
	2.10.3 RX buffer status
	2.10.4 Overrun
	2.10.5 Flush
	2.10.6 Inconsistency protection
	2.10.7 Timestamping
	2.10.8 Frame filtering
	Bit filter
	Range filter

	2.10.9 Sample code 1 - Frame reception in automatic mode (32-bit access)
	2.10.10 Sample code 2 - Frame reception in manual mode (8-bit access)
	2.10.11 Sample code 3 - Bit filter configuration

	2.11 Fault confinement
	2.12 Interrupts
	2.12.1 Frame transmission and reception
	2.12.2 Fault confinement
	2.12.3 TXT buffers and RX buffer
	2.12.4 Error and Overload frame
	2.12.5 Other

	2.13 Fault Tolerance
	2.13.1 Parity protection on RX Buffer RAM
	2.13.2 Parity protection on TXT Buffer RAMs
	2.13.3 TXT Buffer Backup mode
	2.13.4 Parity protection testing

	2.14 Special modes
	2.14.1 Loopback mode
	2.14.2 Self test mode
	2.14.3 Acknowledge forbidden mode
	2.14.4 Self acknowledge mode
	2.14.5 Bus monitoring mode
	2.14.6 Restricted operation mode
	2.14.7 Test mode

	2.15 Corrupting transmitted CAN frames
	2.15.1 Flip a bit of CRC field
	2.15.2 Flip a bit of Stuff count field
	2.15.3 Replace DLC with arbitrary value

	2.16 Other features
	2.16.1 Error code capture
	2.16.2 Arbitration lost capture
	2.16.3 Traffic counters
	2.16.4 Debug register
	2.16.5 Memory testability

	3 CAN FD Core memory map
	3.1 Control registers
	3.1.1 DEVICE_ID
	3.1.2 VERSION
	3.1.3 MODE
	3.1.4 SETTINGS
	3.1.5 STATUS
	3.1.6 COMMAND
	3.1.7 INT_STAT
	3.1.8 INT_ENA_SET
	3.1.9 INT_ENA_CLR
	3.1.10 INT_MASK_SET
	3.1.11 INT_MASK_CLR
	3.1.12 BTR
	3.1.13 BTR_FD
	3.1.14 EWL
	3.1.15 ERP
	3.1.16 FAULT_STATE
	3.1.17 REC
	3.1.18 TEC
	3.1.19 ERR_NORM
	3.1.20 ERR_FD
	3.1.21 CTR_PRES
	3.1.22 FILTER_A_MASK
	3.1.23 FILTER_A_VAL
	3.1.24 FILTER_B_MASK
	3.1.25 FILTER_B_VAL
	3.1.26 FILTER_C_MASK
	3.1.27 FILTER_C_VAL
	3.1.28 FILTER_RAN_LOW
	3.1.29 FILTER_RAN_HIGH
	3.1.30 FILTER_CONTROL
	3.1.31 FILTER_STATUS
	3.1.32 RX_MEM_INFO
	3.1.33 RX_POINTERS
	3.1.34 RX_STATUS
	3.1.35 RX_SETTINGS
	3.1.36 RX_DATA
	3.1.37 TX_STATUS
	3.1.38 TX_COMMAND
	3.1.39 TXTB_INFO
	3.1.40 TX_PRIORITY
	3.1.41 ERR_CAPT
	3.1.42 RETR_CTR
	3.1.43 ALC
	3.1.44 TS_INFO
	3.1.45 TRV_DELAY
	3.1.46 SSP_CFG
	3.1.47 RX_FR_CTR
	3.1.48 TX_FR_CTR
	3.1.49 DEBUG_REGISTER
	3.1.50 YOLO_REG
	3.1.51 TIMESTAMP_LOW
	3.1.52 TIMESTAMP_HIGH

	3.2 TXT Buffer 1
	3.3 TXT Buffer 2
	3.4 TXT Buffer 3
	3.5 TXT Buffer 4
	3.6 TXT Buffer 5
	3.7 TXT Buffer 6
	3.8 TXT Buffer 7
	3.9 TXT Buffer 8
	3.10 Test registers
	3.10.1 TST_CONTROL
	3.10.2 TST_DEST
	3.10.3 TST_WDATA
	3.10.4 TST_RDATA

	4 CAN FD frame format
	4.1 CAN FD Frame format
	4.1.1 FRAME_FORMAT_W
	4.1.2 IDENTIFIER_W
	4.1.3 TIMESTAMP_L_W
	4.1.4 TIMESTAMP_U_W
	4.1.5 DATA_1_4_W
	4.1.6 DATA_5_8_W
	4.1.7 DATA_9_12_W
	4.1.8 DATA_13_16_W
	4.1.9 DATA_17_20_W
	4.1.10 DATA_21_24_W
	4.1.11 DATA_25_28_W
	4.1.12 DATA_29_32_W
	4.1.13 DATA_33_36_W
	4.1.14 DATA_37_40_W
	4.1.15 DATA_41_44_W
	4.1.16 DATA_45_48_W
	4.1.17 DATA_49_52_W
	4.1.18 DATA_53_56_W
	4.1.19 DATA_57_60_W
	4.1.20 DATA_61_64_W
	4.1.21 FRAME_TEST_W

