
CTU CAN FD
IP CORE

System Architecture

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Measurement

December 15, 2023

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

Document
version

Corresponding
Datasheet version

(release)

Date Change description

0.1 2.2 26-09-2019 Initial version - separated stand-alone architecture
document from Datasheet document.

0.2 2.2 29-09-2019 TX Arbitrator loads identifier as part of TXT buffer
validation.

0.3 2.2 07-10-2019 Update interfaces
0.4 2.2 21-10-2019 Clarify TXT Buffer will go to TX Failed in Bus-off.
0.5 2.2 07-11-2019 Replace SSP shift register by SSP generator.
0.6 2.2 13-12-2019 Add “Error delimiter too long” state to Protocol control

FSM. Clear non-actual TODOs.
0.7 2.2 30-04-2020 Add note about implementation types. Remove form error

on EDL/R0. Update Protocol control FSM to handle
protocol exception.

0.8 2.2.4 18-05-2020 Correct Expected segment lenght preload values for
negative resynchronisation.

0.9 2.2.5 6-10-2020 Update Protocol control FSM diagram.
0.10 2.3.0 6-02-2021 Add notes on clock gating.
0.11 2.3.3 26-04-2021 Add description of memory testability.
0.12 2.3.4 10-05-2021 Keep NBTM counter enabled always even in data bit rate.

Fixes bug with improper PH2 lenght if error is detected
during data bit rate with BRP=1

0.13 2.3.5 and higher 16-05-2021 Add res_n_out synchronized reset output.
0.14 2.4 and higher 22-12-2021 Clarify implications of connecting core to 8/16/32 bit buses.
0.15 2.4.1 10-4-2022 Add Parity Check use-case in TXT Buffer. Add sup_parity

generic.
0.16 2.4.2 27-6-2022 Add reset_buffer_rams and active_timestamp_bits

generic. Remove interfaces of each sub-block.
0.17 2.4.3 18-2-2023 Remove drv_bus and stat_bus.
0.18 2.5 9-12-2023 Move to new release of CTU CAN FD. Bump document

version accordingly.

i

Contents

Format 1

1 General Information 2
1.1 Introduction . 2
1.2 Development tools . 2
1.3 Design automation . 2

1.3.1 Register map generation . 3
1.3.2 Documentation generation . 3
1.3.3 Xilinx Vivado component . 3

1.4 General coding guidlines . 3
1.5 Source code access . 4
1.6 ISO11898-1 2015 compliance . 4

2 Interfaces 7
2.1 Memory Bus . 7

2.1.1 RAM-like interface . 7
2.1.2 APB . 8
2.1.3 AHB . 10
2.1.4 Limitations on 8/16 bit buses . 11

2.2 CAN Bus . 11
2.3 Timestamp . 12
2.4 Clock and reset . 12
2.5 Test probe . 12
2.6 Scan enable . 12
2.7 Configuration options . 13

3 System architecture 14
3.1 Block diagram . 14
3.2 Reset architecture . 14
3.3 Clock architecture . 15
3.4 Testability . 16

ii

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

CONTENTS

3.4.1 Memory testability . 16
3.5 Sequential logic . 16
3.6 Resynchronisers . 16
3.7 Memories . 17
3.8 Pipeline architecture and triggers . 18
3.9 CAN Frame metadata . 20
3.10 CAN Frame format . 20
3.11 Test mode . 21
3.12 ISO vs NON-ISO CAN FD . 22
3.13 Integration vs. Reintegration . 22
3.14 CAN Core . 23

3.14.1 Protocol control . 25
Protocol control FSM . 27
Control counter . 29
Retransmitt counter . 30
Error detector . 38

3.14.2 Operation control . 41
3.14.3 Fault confinement . 43

Fault confinement rules . 44
3.14.4 Bit stuffing . 45
3.14.5 Bit destuffing . 47
3.14.6 CAN CRC . 49
3.14.7 Trigger multiplexor . 51
3.14.8 Bus traffic counters . 52

3.15 RX buffer . 53
3.15.1 Storing protocol . 54
3.15.2 Overrun flags . 57
3.15.3 Received frame timestamp . 57
3.15.4 Reading protocol . 57
3.15.5 RX Buffer RAM . 59

3.16 Frame Filters . 60
3.17 TXT buffer . 61

3.17.1 TXT buffer commands . 62
3.17.2 TXT buffer RAM . 63
3.17.3 TXT buffer - Transmission availability . 63
3.17.4 TXT buffer - Use cases . 64

3.18 TX arbitrator . 66
3.18.1 TXT buffer validation process . 67
3.18.2 Priority decoder . 71

iii

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

CONTENTS

3.18.3 TXT buffer change between transmissions . 73
3.18.4 TX Arbitrator corner-cases . 73
3.18.5 TXT buffer addressing . 74
3.18.6 TXT buffer RAM access . 74
3.18.7 TX frame timestamp comparison . 74
3.18.8 Lock and Unlock commands . 75
3.18.9 Metadata double-buffering . 75
3.18.10 TX datapath hazard protection . 76
3.18.11 TX Abort + Retransmitt clear . 76

3.19 Interrupt Manager . 76
3.20 Prescaler . 78

3.20.1 Bit rate configuration . 79
3.20.2 Bit time counters . 79
3.20.3 Bit segment meter . 80
3.20.4 Segment end detector . 82
3.20.5 Bit rate switch . 82
3.20.6 Prescaler FSM . 82
3.20.7 Trigger generator . 83
3.20.8 Synchronisation control . 84
3.20.9 Synchronisation checker . 84

3.21 Bus sampling . 86
3.21.1 Transmitter delay measurement . 87
3.21.2 Secondary sampling point offset . 88
3.21.3 Secondary sampling point generator . 88
3.21.4 Bit error detection . 89
3.21.5 TX data cache . 90

3.22 Memory registers . 91
3.22.1 Register types . 91

Read/Write register . 91
Read only register . 92
Write only register . 92
Read/Write Once register . 92

3.22.2 Register attributes . 93

iv

Format

Throughout this document following notations are kept:

• Common text is written with this font.

• Memory registers are always described with capital letters e.g. REGISTER or REGISTER [BIT_FIELD] to represent
register or bit field within a register.

• Signal names and generic names are written by bold lower-case cursive (e.g. can_rx)

• Explicit terms from ISO11898-1 2015 are marked via red color (e.g. SOF bit). Definition of these terms can be
found in [1].

• Open issues and TODOs are written in blue font like so TODO: not yet implemented.

1

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

1. GENERAL INFORMATION

1. General Information

1.1 Introduction

This document describes architecture of CTU CAN FD IP Core. It describes interfaces within the core and function of
each module. This document is not written in specification format (device shall behave like so), rather in description
format (device behaves like so). Nevertheless, this document alogn with CTU CAN FD Datasheet ([2]) serves as reference
on how shall CTU CAN FD function and it is supposed to be used as verification reference on how shall the device behave.

1.2 Development tools

To develop CTU CAN FD following tools are used:

• GHDL for RTL simulations.

• Quartus Prime and Xilinx Vivado for Synthesis to Intel and Xilinx FPGAs, Timing analysis and design size bench-
marks.

• VUnit for simulation wrappers.

• Kactus2 for definition of register map in IP-XACT format.

• LYX v.2.3.0 to write documentation.

• GitLab of CTU FEE to host source code GIT repository.

• Wavedrom for Timing Diagrams.

• Python for scripting.

1.3 Design automation

Part of CTU CAN FD Core is auto-generated. Register map is implemented in Kactus 2 in IP-XACT format (“spec/
CTU/ip/CAN_FD_IP_Core/2.1/CAN_FD_IP_Core.2.1.xml”). The design in IP-XACT format is unified specification
of user-interface. Following resources are generated from IP-XACT specification:

• VHDL packages with address, bit-fields and reset values definitions
(“src/lib/can_fd_frame_format.vhd”, “src/lib/can_fd_register_map.vhd”).

2

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

1. GENERAL INFORMATION

• C header file with address map definitions and register descriptions
(“driver/ctu_can_fd_regs.h”, “driver/ctu_can_fd_frame.h”).

• Lyx documentation of register map. Reffer to [2].

• RTL Code of Control Registers module (“src/memory_registers/generated/*).

• Documentation of RTL module interfaces (“doc/core/entity_docs”).

To generate these design materials CTU CAN FD IP Core uses IP-XACT register map generator which is accessible at
regmap_gen. Register map generator is linked as sub-module of CTU CAN FD repository. Clone all the submodules
recursively before using register map generator. All of the generated files are considered as don’t touch. Part of this
document is also auto-generated. Each section which describes list of Generics and Signals of a module is generated from
VHDL RTL code.

1.3.1 Register map generation

When CTU CAN FD GIT repository is clonned, register map can be generated by following script:

cd scripts
./update_reg_map

1.3.2 Documentation generation

Documentation can be exported from VHDL RTL codes by following script:

cd scripts
python gen_lyx_tables.py --configPath vhdl_lyx_interface_cfg.yml

“vhdl_lyx_interface_cfg.yml” is YAML configuration file which describes source RTL codes and destination LyX files.

1.3.3 Xilinx Vivado component

CTU CAN FD contains Xilinx Vivado component (“src/component.xml”) for integration of CTU CAN FD to Xilinx based
FPGAs. Xilinx Vivado component is generated by following script:

cd scripts
python gen_vivado_component.py

1.4 General coding guidlines

RTL code within CTU CAN FD has following coding rules:

• Underscore is always used to separate words within signal/entity/process/variable/port/generic names (e.g. tx_hw_cmd,
can_core).

• Constants are written by capital letters with “C_” prefix (e.g. C_SUSPEND_DURATION).

• Generics are written by capital letters with “G_” prefix (e.g. G_RX_BUFF_SIZE). This rule has an exception on
top level interface and wrappers of CTU CAN FD (can_top_level, can_top_ahb).

3

https://github.com/Blebowski/Reg_Map_Gen

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

1. GENERAL INFORMATION

• Signals are always commented on line before the signal. This must be especially true for port signals. This allows
to extract documentation of VHDL entities from RTL code.

• Sections of signals can be defined by surrounding section name by whole line of “-” characters.

• All RTL codes are indented with 4 spaces.

• Line length shall be limited to 80 characters.

• Instance names are suffixed with “_inst”, process names are suffixed with “_proc”, cover point names are suffixed
with “_cov”, assertion names are suffixed with “_asrt”. DFF names can be suffixed by “_d/_q” depending on
whether it is DFF input/output.

1.5 Source code access

CTU CAN FD IP Core source code is available in CTU FEE GitLab repository at:
https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

1.6 ISO11898-1 2015 compliance

CTU CAN FD is compliant with [1]. With regards to this document, CTU CAN FD supports all implementation options
(Classical CAN, CAN FD Tolerant, CAN FD enabled). Compliance to each of these options can be configured via a
register (run-time configurable). Reffer to [2] for description of CTU CAN FD configuration.
Support of optional features from [1] is described in Table 1.1 and Table 1.2.

4

https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

1. GENERAL INFORMATION

Table 1.1: ISO11989-1 optional features (1)

Feature Name Status Notes
FD Frame format Supported
Disabling of frame
formats Supported Reception of CAN FD frames can be disabled by setting MODE[FDE] = ’0’.

Limited LLC
frames Not

Supported
Only full size (64 byte) frames are supported.

No transmission of
frames including
padding bytes

Not
Supported

No padding is inserted since full sized frames are supported.

LLC Abort
Interface Supported Issuing Set abort command to TXT buffer which is used for transmission is

equal to issuing LData.Abort_Request / LRemote.Abort_Request primitive.
ESI and BRS
values Supported BRS value can be specified for each transmitted CAN frame. ESI value can’t

be specified for transmitted CAN frames, it is always derived from current
Fault confinement state of CTU CAN FD. ESI value can be read for each
received frame.

Method to provide
MAC data
consistency

Partially
Supported

CTU CAN FD implements TXT Buffer RAMs which stores whole CAN frame
for transmission before the transmission is started. This corresponds to: “The
MAC sub-layer shall store the whole message to be transmitted in a
temporary buffer that is filled before the transmission is started.” Additionally,
CTU CAN FD implements parity protection on each word of TXT Buffer and
RX Buffer if sup_parity=true.

Time and time
triggering Partially

Supported
Time triggerred transmission is available in TX Arbitrator module. CTU CAN
FD does not support time base by itself, it is left up to integrator to provide
Time base via timestamp input. The reason for this, is to share single Time
base between multiple instances of CTU CAN FD. timestamp input is
readable from CTU CAN FD. No event generation is provided from
timestamp input.

Time stamping Supported Timestamping of RX frames is supported in SOF or EOF bit. Time Base
counter must be provided by integrator and must be connected to
timestamp input.

Bus Monitoring
mode Supported Supported via MODE[LOM].

Handle Supported Handle corresponds to TXT Buffer.
Restricted
operation Supported Supported via MODE[ROM].

Separate
prescalers for
Nominal and Data
Bit Rate

Supported Prescalers are separate in BTR[BRP] and BTR_FD[BRP_FD] registers.

5

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

1. GENERAL INFORMATION

Table 1.2: ISO11989-1 optional features (1)

Feature Name Status Notes
Disabling of
automatic
retransmission

Supported Supported via SETTINGS[RTRLE] and
SETTINGS[RTRTH] registers.

Maximum number
of retransmissions Supported

Disabling of
protocol exception
event on res bit
detected recessive

Supported Protocol exception is configurable via SETTINGS[PEX] register.

PCS_Status Supported CTU CAN FD supports both nominal and data bit rate.
Edge filtering
during the bus
integration state

Not
Supported

Time resolution
for SSP placement Not

Supported
Secondary sample point position is always given in minimum time quanta
regardless of bit rate prescaler seettings.

FD_T/R message Supported

6

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

2. Interfaces

2.1 Memory Bus

CTU CAN FD is a slave device accessible via one of three memory buses:

• RAM-like interface,

• APB

• AHB.

Each interface can be used via dedicated wrapper. SW shall not access CTU CAN FD sooner than two clock cycles
after external reset was released (due to reset synchronisation) (see Table 3.1). If CTU CAN FD is accessed earlier,
writes accesses have no effect and read accesses return zeroes. If external reset is executed via SW driver (e.g. at driver
load time), it is recomended to add corresponding delay before driver executes any access to the device (e.g. via usleep,
nanosleep, dummy NOPs, or similar mechanism).

2.1.1 RAM-like interface

Wrapper can_top_level.vhd

RAM-like interface is default interface of CTU CAN FD with signals shown in Table 2.1. A typical read/write transcations
on RAM-like interface are shown in Figure 2.1. Note that RAM-like interface does not contain any Ready/ACK signal.
CTU CAN FD is always able to process written data in one clock cycle (write access) and return read data in the next
clock cycle (read access). Accesses on RAM-like interface shall be 4 byte aligned (lower 2 bits of address shall be equal
to 0). If access is not 4 byte aligned, lower 2 bits of address are ignored. Therefore, single access spaning more than 1
32 bit memory word is not possible. Each byte is separately writable and readable via byte enable (sbe), therefore 8-bit
and 16-bit accesses are supported. If sbe signal is zero, data on corresponding byte are not written during write access,
and zeroes are returned during read access. CTU CAN FD is little endian oriented (LSB = Lowest Adress -> sbe(0) =
Byte 0 = data_in/out (7:0); sbe (3) = Byte 3 = data_in/out(31:24)).
RAM-like interface supports burst read from RX Buffer (see 3.15). In such case, address input must be equal to
RX_DATA register address during whole read operation (“stationary”/”frozen” burst). During such read, each word
must be read by 32-bit access (sbe=”1111”). This means that read from RX Buffer is always executed by 32-bit word
regardless of sbe value. Such a situation is shown in Figure 2.2.

7

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

Table 2.1: RAM-like interface

Signal Name Direction Width Description
data_in in 32 Write Data
address in 16 Address
scs in 1 Chip Select
srd in 1 Read indication
swr in 1 Write indication
sbe in 4 Byte enable (applicable for both reads and writes)
data_out out 32 Read data

 Write access Read access Read after Write Write after Read

clk_sys

scs

swr

srd

sbe BE 0 BE 1 BE 2 BE 0 BE 1 BE 2 BE 1 BE 2 BE 1 BE 2

address 0000 0004 0008 0000 0004 0008 0004 0008 0004 0008

data_in Data 0 Data 4 Data 8 Data 4 Data 8

data_out Data 0 Data 4 Data 8 Data 8 Data 4

Figure 2.1: RAM-like interface

clk_sys

scs

swr

srd

sbe 1111 1111 1111 1111 1111 1111 1111 1111

address RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA RX_DATA

data_out Data Word 1 Data Word 2 Data Word 3 Data Word 4 Data Word 5 Data Word 6 Data Word 7 Data Word 8

Figure 2.2: RX Buffer burst read

RAM-like interface is Avalon compatible (according to [3]) and mapping of RAM like signals to Avalon Memory-mapped
slave signals is shown in Table 2.2. When connected to Avalon MM master, write access to reserved address has no
effect and read access returns all zeroes instead of responding with DECODEERROR response. response signal shall be
connected to “00”, writeresponsevalid and readdatavalid shall be connected to ’1’.

2.1.2 APB

Wrapper can_top_apb.vhd

APB Wrapper is compatible with [4]. Signals of CTU CAN FD on APB interface are shown in Table 2.3. Note that every
access on APB Interface lasts two clock cycles, no bursts can be executed by nature of this interface. CTU CAN FD

8

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

Table 2.2: RAM-like to Avalon mapping

RAM-like signal
name

Avalon signal
name

Description

data_in write_data Data written to Avalon MM slave.
address address Address for read/write of Avalon MM slave.
scs - Shall correspond to chip select of slave if more than 1 slave is connected

to given bus. If single slave is connected, shall be connected to 1.
srd read Read indication
swr write Write indication
sbe byteenable Byte enable, used for both read and write transfers.
data_out readdata Data read from Avalon MM slave.

does not stall transfers on APB interface via s_apb_pready , it keeps s_apb_pready always high. CTU CAN FD does
not return error via s_apb_pslverr on any access. If SW executes access to an invalid location within CTU CAN FD,
it is simply ignored. This allows dumping whole CTU CAN FD memory space without memory access errors. Accesses
on APB Interface shall be 4 byte aligned. If access is not 4 byte aligned, lowest 2 bits of address are ignored. 8/16 bit
write accesses are supported via write strobe signal (s_apb_pstrb). Basic accesses on APB are shown in Figure 2.3.

Table 2.3: APB interface

Signal Name Direction Width Description
s_apb_paddr in 32 Address
s_apb_penable in 1 Enable. Indicates second cycle of access.
s_apb_prot in 3 Protection type. Ignored by CTU CAN FD. All access types

are treated equally by CTU CAN FD.
s_apb_prdata out 32 Read data.
s_apb_pready out 1 Ready. Always asserted.
s_apb_psel in 1 Slave select.
s_apb_pslverr out 1 Access error. CTU CAN FD always drives this pin low.
s_apb_pstrb in 4 Write Strobe. During write access, logic 1 indicates according

byte will be written. Ignored during read access.
s_apb_pwdata in 32 Write data.
s_apb_pwrite in 1 Access direction.

9

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

8/16/32 bit Write access Read accesses

aclk

psel

pwrite

penable

pstrb 0001 0011 1111 0000

paddr 0000 0004 0008 0000 0004 0008

pwdata Data 0 Data 4 Data 8

prdata Data 0 Data 4 Data 8

Figure 2.3: APB Interface access

2.1.3 AHB

Wrapper CAN_top_ahb.vhd

AHB Wrapper is compatible with [8]. Signals of CTU CAN FD on AHB interface are shown in Table 2.4. CTU CAN
FD accepts all transfer types (Non-sequential, Sequential, Idle, Busy) on AHB bus. CTU CAN FD treats burst accesses
equally as regular accesses (no internal caching is done). If read transfer occurs after write transfer (directly one after
another), CTU CAN FD inserts one wait cycle into AHB transaction, as is shown in Figure 2.4. CTU CAN FD does not
return error via hresp on any accesses. If SW executes access to an invalid location within CTU CAN FD, it is simply
ignored. This allows dumping whole CTU CAN FD memory space without memory access errors. CTU CAN FD does
not support unaligned accesses on AHB Bus. Each access shall be aligned to its own size (8-bit access can have arbitrary
address, 16 bit access must have address 2-byte aligned, 32-bit access must have address 4-byte aligned). No locked
sequences (hmastlock) are supported by CTU CAN FD.

Table 2.4: AHB interface

Signal Name Direction Width Description
haddr in 32 Address
hwdata in 32 Write Data
hsel in 1 Write select
hwrite in 1 Access direction
hsize in 3 Access size. (8/16/32 bit access sizes are supported).
hburst in 3 Burst indication, ignored by CTU CAN FD.
hprot in 3 Protection type, ignored by CTU CAN FD.
htrans in 2 Transaction type.
hmastlock in 1 Locked sequence indication.
hready in 1 Ready indication.
hreadyout out 1 Ready indication output.
hresp out 1 Response type.
hrdata out 32 Read data.

10

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

8/16/32 bit Write access Read after Write 8/16/32 bit Read accesses

hclk

hsel

hwrite

hready

hsize 000 001 010 010 010 000 001 010

haddr 0001 0002 0004 0000 0004 0001 0002 0004

hwdata Data 1 Data 2 Data 4 Data 0

hrdata Data 4 Data 1 Data 2 Data 4

Figure 2.4: AHB Interface access

2.1.4 Limitations on 8/16 bit buses

CTU CAN FD is 32-bit peripheral, however, it is possible to integrate it to systems with 8/16 bit bus thanks to “byte
enable” capabilities of each bus interface wrapper. If SW accesses CTU CAN FD via 8/16 bit bus, access to simple 32-bit
R/W register can be split into 4/2 consecutive accesses without affecting the functionality. However, due to side-effects
on several registers, there are following limitations when accessing CTU CAN FD from 8/16 bit buses:

• CTU CAN FD must be used in RX Buffer manual mode (MODE[RXBAM] = 0). This is necessary since read of
single word from RX Buffer can not be done by single read access to RX_DATA register. On 8 bit systems, it will
require 4 reads (addresses RX_DATA .. RX_DATA + 0x3), on 16 bit systems it will require 2 reads (addresses
RX_DATA and RX_DATA + 0x2). Since each read from RX_DATA register in RX Buffer automated mode
(MODE[RXBAM] = 1), will move RX Buffer read pointer, the rest of the memory word would be lost without
being read out. Thus it would be impossible to correctly read out received frames. Reading out RX Buffer on
8/16 bit systems thus requires operation in MODE[RXBAM] = 0 and manually moving RX Buffer read pointer by
COMMAND[RXRPMV] bit.

• On 8 bit systems, TX_PRIORITY register is only able to change priority of TXT Buffers atomically if number
of TXT Buffers is 2. On 16 bit systems, TX_PRIORITY register is only able to change priority of TXT Buffers
atomically, if number of TXT Buffers is 2-4. Atomic change of TXT Buffer priorities is required if TXT Buffers are
used like a FIFOs by priority rotation (such approach is used by CTU CAN FD Linux driver). Thus, if TXT buffer
priorities need to be rotated atomically, following restrictions apply:

– On 8 bit systems, only 2 TXT Buffers must be used.
– On 16 bit systems, only up to 4 TXT Buffers must be used.
– If atomic rotation of priorities is not required, number of TXT Buffers is not restricted.

2.2 CAN Bus

CTU CAN FD interfaces to physical layer transceiver via can_rx and can_tx pins. can_rx input is assumed to be
asynchronous to System clock (see 2.4) and it is treated like asynchronous signal. can_tx output is synchronous to
System clock. can_tx output is glitch-free during operation on CAN bus as long as MODE[LOM] bit is not changed.

11

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

2.3 Timestamp

CTU CAN FD interfaces to system level Time base via timestamp input. timestamp input is assumed to be synchronous
to System clock, and therefore there is no resynchronization on this input. If timestamp is unused (no Timestamping /
Time Triggering capability), it shall be driven to 0xFFFF FFFF FFFF FFFF. If timestamp is used, it shall be driven by
unsigned up-counting counter which measures flow of time within a system to which CTU CAN FD is being integrated.
timestamp does not need to be incremented every clock cycle of System clock, nor there is a constraint on step that it
is incremented with, it only needs to be synchronous to System clock. If system level time counter has lower width than
64 bits, integrating system shall connect such counter to lower bits of timestamp input, and drive unused high bits to
zero. Integrating system shall also set active_timestamp_bits to width of such counter - 1 (e.g. when system has 32
bit timestamp, it shall be connected to timestamp[31:0] and active_timestamp_bits=31).

2.4 Clock and reset

CTU CAN FD is clocked via single clock input which represents System clock domain. Name of clock signal is different
depending on used memory bus wrapper as is shown in Table 2.5. CTU CAN FD has single external reset which is treated
as asynchronous reset, and it is internally synchronized by reset synchronizer (see 3.3). Note that AHB bus specifications
requires hresetn to be synchronous to hclk. CTU CAN FD implemenation is more relaxed, and does not require these
signals to be synchronous to hclk (System clock), since it handles reset synchronisation internally. res_n_out signal
output contains synchronized version of res_n/arstn/hresetn input. It can be left unconnected, or it can be used as
an indication that reset has been completed and CTU CAN FD can be accessed on its memory bus.

Table 2.5: Clock signal names

Bus type Clock signal name Reset signal name
RAM-like sys_clk res_n
APB aclk arstn
AHB hclk hresetn

2.5 Test probe

CTU CAN FD contains test_probe record output. This signal is used by CTU CAN FD test-bench to peek inside
the design of CTU CAN FD. When integrating CTU CAN FD, this output can remain un-connected. Reffer to [8] for
description of how to connect test-probe if integrating CTU CAN FD VIP. This signal has no effect on design functionality,
and it can remain unconnected in design to which CTU CAN FD is integrated.

2.6 Scan enable

CTU CAN FD is designed to simplify DFT insertion during ASIC design via scan_enable input. When scan_enable =
1, CTU CAN FD is in scan mode. In scan mode following is valid:

• All clock gates within CTU CAN FD are un-gated (to make sure that scan chain is always clocked).

• All resets which depend on value of other flip-flops are gated (to avoid reseting part of scan chain during scan
operation).

12

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

2. INTERFACES

scan_enable input shall be controlled by SoC level DFT controller, and it shall be connected to the same signal
which enables scan mode on inserted scan flip-flops. Purpose of scan mode in CTU CAN FD, is to reduce number of
violations/warnings during DFT insertion. If CTU CAN FD is used in FPGA (target_technology = 1), scan_enable
shall be tied low. scan_enable signal shall be driven synchronous to System clock.

2.7 Configuration options

CTU CAN FD is configurable on top level interface via VHDL generics which are explained in Table 2.6.

Table 2.6: CTU CAN FD generic parameters

Name Type Default Range Description
rx_buf_size natural 128 32-4096 Size of RX Buffer RAM in 32 bit words. See 3.15.
txt_buffer_count natural 4 2-8 Number of TXT buffers. See 3.17.
sup_filt_A boolean true true/false Synthesize filter A. See 3.16.
sup_filt_B boolean true true/false Synthesize filter B. See 3.16.
sup_filt_C boolean true true/false Synthesize filter C. See 3.16.
sup_range boolean true true/false Synthesize range filter. See 3.16.
sup_traffic_counters boolean true true/false Synthesize traffic counters. See 3.14.8.
target_technology natural 1 0-1 Target technology (set 0 for ASIC, set 1 for FPGA).
sup_test_registers boolean true true/false Synthesize test registers.
sup_parity boolean false true/false Add parity protection to TXT Buffers / RX Buffer.
reset_buffer_rams boolean false true/false When true, TXT Buffer and RX Buffer RAMs are reset

by res_n.
active_timestamp_bits integer 63 0-63 Number of active timestamp bits minus - 1.

13

3. System architecture

3.1 Block diagram

Detailed block diagram of CTU CAN FD IP Core is shown in Figure 3.1.

Interrupt

can_top_level

memory_registers

Memory
Bus

control_registers

interrupt_manager

interrupt_module

M
a

sk Se
t/C

le
ar

Statu
s

E
n

ab
le

 Set/C
le

ar

Statu
s C

lea
r

M
a

sk
E

n
ab

le

Configuration record

Status record

txt_buffer

P
o

rt A
 B

u
s

SW
 C

o
m

m
a

n
d

s

B
u

ffe
rs statu

s

txt_buffer_fsm

txt_buffer_ram

tx_arbitrator

Buffers
Ready

tx_arbitrator_fsm

priority_decoder

TXT Buffer priorites

Port B Bus

HW Commands

TX
Metadata

TXT Buffer
word

TXT Buffer
Pointer

rx_buffer

rx_buffer_fsm

rx_buffer_ram

rx_buffer_pointersRead Command

Erase Buffer
Clear Overrun
RX Buffer Word

Empty
Full

Frame count
Size

frame_filters

mask_filter (A)

mask_filter (B)

mask_filter (C)

range_filter

Store Metadata
(Filtered)

Store Data
(Filtered)

Reception Abort
(Filtered)

Data Overrun

 Reception Valid
(Filtered)

Frame valid

can_core

Sto
re

 M
e

ta
d

ata

Sto
re

 D
a

ta

R
e

cep
tio

n
 A

b
o

rt

 R
e

cep
tio

n
 V

a
lid

Interrupt sources

protocol_control can_crc

protocol_control_fsm

tx_shift_register

rx_shift_register

control_counter

retransmitt_counter

error_detector

crc_calc(15)

crc_calc(17)

crc_calc(21)

bit_stuffing

bit_destuffing

fault_confinement

operation_control

fault_confinement_rules

fault_confinement_fsm

error_counters

prescaler

Driving Bus
Assignments

Logic

Frame Commit,
Data Overrun,

RAM Acess Logic

Metadata Loading,
Pointer Multiplexing,

Timestamp comparing
Logic

Transmission
Valid

bus_sampling

Timestamp

TX Data

RX Data

Bit Error

Sample
Control

Transceiver
Delay

Calibration

Secondary
Sample
Reset

Sa
m

p
le

 C
o

n
tro

l

Syn
ch

ro
n

isatio
n

C

o
n

tro
l

N
o

 P
o

sitive

R
e

syn
ch

ro
n

isatio
n

TX
 T

rigge
r

R
X

 T
rig

ge
rs

CAN TX
CAN RX

Syn
ch

ro
n

isatio
n

E

d
ge

Tim
e

 Q
u

an
ta E

d
ge

bit_time_cfg_capture

sample_mux

data_edge_detector

tx_data_cache

bit_error_detector

trv_delay_meas

sig_sync

SSP Shift register
Addressing, Majority

decoding Logic

synchronisation_checker

trigger_generator

bit_time_cfg_capture

bit_time_counters (Nominal)

resynchronisation (Nominal)

bit_time_counters (Data)

resynchronisation (Data)

bit_time_fsm

RX Data
Word

SOF Pulse

RX Metadata

Figure 3.1: CTU CAN FD - Detailed block diagram

3.2 Reset architecture

CTU CAN FD IP Core has two reset sources: External reset and Soft Reset. Both reset sources are described in Table
3.1. Both reset cause assertion of internal System reset which resets whole CTU CAN FD including Memory registers.
Reset architecture is shown in Figure 3.2. Note that DFF which pipelines Soft Reset is a DFF without Set and Reset.
Reset on this DFF is de-activated on purpose to avoid timing problems between Q output and CLR pin of this DFF. An
example of reset sequence by both External as well as Soft reset are shown in Figure 3.3. Note that all DFFs in Figure
3.2 are clocked by System clock.

14

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.1: Reset description

Reset Name Asserted by Reset description

External Reset
RAM like interface:
res_n = 0.

To be used by HW reset structure integrating CTU CAN FD
(e.g. POR, System level reset controller). CTU CAN FD shall
not be accessed for two System clock periods after External
reset was de-asserted (or until res_n_out = 1). Asserting
External reset does not require System clock to be running.
De-asserting reset requires System clock to be running.

AHB interface:
hresetn = 0.
APB interface:
aresetn = 0.

Soft Reset Writing MODE[RST] = ’1’. To be used by SW for resetting CTU CAN FD. System clock
must be running when this reset is asserted (needed for Bus
access and pipeline DFF).

External
Reset

res_sync

Memory registers

Synchronised
Reset

Memory
Bus

System
Reset

Soft
Reset

D Q

CLR

D Q

CLR

D Q
CLR

Figure 3.2: Reset structure

System clock

External reset

Soft reset

System reset

Assert De-assert

Assert De-assert

a c

e g

b d f h

Figure 3.3: Reset operation

3.3 Clock architecture

CTU CAN FD IP Core contains one clock domain, System clock. Each other timing related information (e.g. time
quanta) is derived from System clock via clock enable signals. This makes CTU CAN FD fully synchronous design with
no clock domain crossing. CTU CAN FD is assumed to be implemented in a single power domain, all parts of CTU CAN
FD must be either turned on or off. To reduce dynamic power consumption, majority of registers is written to allow
usage of “clock enables” (FPGAs) or inferred “clock gating” (ASIC).
If target_technology = 0 (ASIC), hand-written clock gating is implemented for Memory registers, RX buffer RAM
and TXT Buffer RAMs. If target_technology = 1 (FPGA), no hand-written clock gating is implemented, clocks for

15

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

memory registers RX buffer RAMs , and TXT Buffer RAMs are always enabled. There is no functional difference between
ASIC/FPGA target technology (even if clocks are always enabled, registers are wrriten only when enabled).
If target_technology = 0 (ASIC), manually used clock gating cell (clk_gate.vhd) has Latch + AND type. It is
recommended to replace clk_gate with with Integrated clock gating cell (e.g. by rewriting internals of clk_gate.vhd by
instantiating technological ICG), if such cell is available. If not done, clk_gate.vhd will synthesize into discrete Latch +
AND gate. If target_technology = 1 (FPGA), then clk_gate.vhd does not gate clocks, but only connects input clock
to output clock.
If CTU CAN FD is implemented in SoC system, it is recommended to implement configurable clock gating for whole
CTU CAN FD peripheral on system level to save power when CTU CAN FD is not clocked. In such situation, CTU CAN
FD ignores traffic on CAN Bus and continously transmitts recessive bits to CAN Bus.

3.4 Testability

CTU CAN FD contains following features for manufacturing testability:

1. Memory testability - Allows direct read/write access to TXT Buffer RAMs and RX Buffer RAM. This approach is
supported only when Test registers memory region is synthesized (sup_test_registers = true). In general, it is
recommended to synthesize Test registers only for ASIC implementations (target_technology = 0), as synthesis
for FPGA implementations is usefull only for testing parity protection of RX / TXT Buffer RAMs, since test access
bypasses parity encoding mechanism.

2. Scan mode (via scan_enable input) - In scan mode, all clock gates are enabled, and all reset signals which depend
on outputs of combinatorial logic are gated.

3.4.1 Memory testability

Each memory within CTU CAN FD can be tested at production via Test Registers (e.g. executing march pattern
test). Any data can be written to any address inside each memory. Memory testability is available only in Test Mode
(MODE[TSTM] = 1). If device is not in Test mode, accesses to whole Test registers block are ignored. Memory
testability has its own “enable” bit (TSTCTRL[TMENA]), which must be set to enable memory testing via Test registers.
An example of memory testing is shown in Table 3.2. Note that this test sequence is only an example. Since Test
registers provide independed Read/Write functionality to arbitrary addresses, any known testing approach can be used
(any address step, direction or data pattern can be used).

3.5 Sequential logic

CTU CAN FD logic is implemented from DFFs with asynchronous reset. If TXT Buffer and RX Buffer RAMs (see 3.7)
are implemented from DFFs (not inferred, nor replaced by hard RAMs) and reset_buffer_rams = false, DFFs without
set and reset are used. All DFFs are active on positive clock edge (to mitigate effects of clock duty-cycle). CTU CAN
FD is latch free (apart from latches within clock gate cells). These facts can be used as a sanity check that there should
be no DFFs without Set and Reset within CTU CAN FD after synthesis (apart from TXT Buffer / RX Buffer RAMs, if
they are synthesized, not inferred, nor replaced by Hard RAM macros).

3.6 Resynchronisers

Resynchronisers within CTU CAN FD IP Core are listed in Table 3.3.

16

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.2: Memory testing example

Step Action
1 Set MODE[TSTM] = 1 and TSTCTRL[TMENA] = 1. This enables memory testing.
2 Configure target memory to be tested in TST_DEST[TST_MTGT] register. Set

TST_DEST[TST_ADDR] = 0 (initial address).
3 Write test pattern to TST_WDATA register. It is up to user to choose test pattern.
4 Execute write to the memory by writing TSTCTRL[TWRSTB] = 1. Note that TSTCTRL[TMAENA]

must remain set.
5 Increment address in TST_DEST[TST_ADDR]. If this is last address within tested memory, then go to

Step 6. Otherwise go to Step 3.
6 Set TST_DEST[TST_ADDR] = 0 (initial address).
7 Wait for 1 System clock clock cycle (read from RAMs is pipelined).
8 Read value from TST_RDATA. Check that value read from this register matches what has been written

TST_WDATA register in Step 3. If value does not match, test fails.
9 Increment address in TST_DEST[TST_ADDR]. If this is last address within tested memory, then go to

Step 10. Otherwise go to Step 7.
10 Test is successfull.

Table 3.3: Resynchronisers

Resynchroniser function Resynchroniser Type Resynchroniser path
Resynchronisation of External Reset Reset Synchroniser can_top_level\rst_sync_inst
Resynchronisation of CAN RX Data
Stream

Signal Synchroniser can_top_level\ bus_sampling_inst\
can_rx_sig_sync_inst

3.7 Memories

CTU CAN FD contains memories which are used to store CAN FD frames. These memories are parts of RX buffer and
TXT buffers (see 3.15 and 3.17). List of memories is shown in Table 3.4. Memories are designed to automatically infer
dedicated synchronous RAM resources on FPGA. When integrating CTU CAN FD to ASIC, integrator can either replace
these memories by hard macros, or leave memory implementation to synthesis tool. In such case, memory consists of
DFFs without set or reset (memory is “uninitalized”). If it is desirable for RAMs to be reset, set reset_buffer_rams =
true. When reset_buffer_rams = true, res_n RAMs to zeroes.
Each memory is synchronous memory with one clock cycle latency on data read and one cycle write access latency. Both
memories are dual port memories with write-only port A, read-only port B, and the same clock signal is used to clock
both ports. If true dual port memories are used, write data/enable of Port B shall be driven to 0. Memory word width
is 32 bits, and it must support byte-enable capability. An example of memory access is shown in Figure 3.4. In case of
read during write, memories return old data value, there is no “bypassing” implemented.

17

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.4: RAM memories

Memory
location

Write
mask

Instance Name Instances Depth Word
Width

Address
size

Port A
Access

Port B
Access

Read

RX
Buffer
RAM

No rx_buffer_ram 1 32-
4096

32 12 CAN
Core

Memory
Regis-
ters

Synchronous

TXT
Buffer
RAM

No txt_buffer_ram 2-8 20 32 5 Memory
regis-
ters

CAN
Core

Synchronous

System clock

Port A Address 1

Port A Data (write) AA55AA55

Port A Write

Memory content AA55AA55

Port B Address 1

Port B Data (read) AA55AA55

Figure 3.4: Dual port memories access

3.8 Pipeline architecture and triggers

Processing of data on CAN bus in CTU CAN FD is pipelined into three stages which are described in Table 3.5. Pipeline
architecture meets maximal information processing time (2 time quanta) when System clock period is equal to time
quanta. Since processing takes two clock periods information processing time of CTU CAN FD is 2 . Due to this,
minimum time quanta of CTU CAN FD is 1.
Each stage of pipeline processing is controlled by trigger signal which is active for one clock cycle. Trigger signals are
used to synchronise data transfer in exact moments to meet bit timing requirements on CAN Bus. Trigger signals are
used as clock enable signals for DFF which process data in according pipeline stage. If trigger signal is inactive, processed
data remain on DFF output and keep their previous value (data after bit destuffing (RX) and bit stuffing (TX)). An
example of pipeline processing is shown in Figure 3.5. Note that Process pipeline stage always occurs one clock cycle
after Destuff pipeline stage. Between Process and Stuff pipeline stage there will be number of clock cycles where no
data are processed. This gap corresponds to TSEG2 (see 3.20.1 for definition of TSEG2).

18

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

 Sample point Transmitt next bit

System clock

can_rx Bit N Bit N + 1

can_tx Bit N Bit N + 1

Destuffed data (RX) Bit N - 1 Bit N

Pre bit-stuffing data (TX) Bit N Bit N + 1

Pipeline stage Destuff Process Stuff

RX Trigger 0

RX Trigger 1

TX Trigger

Bit time segment TSEG1 TSEG2 TSEG1

Destuff

Process

Stuff

a c

e

i

f

g

b d

Figure 3.5: Datapath pipeline processing

In case of negative resynchronisation, length of TSEG2 can be shortened to less then 2 clock cycles, in such case following
TX Trigger signal is throttled by one clock cycle and overall length of bit remains unaffected. Such situation is further
described in 3.20.7. A high level algorithm for processing of data on CAN bus is described in Table 3.7.

Table 3.5: Pipeline stages

Index Pipeline
stage

Trigger signal Corresponding
moment on CAN
Bus

Modules which process
data in this pipeline
stage

Description

1 Destuff RX Trigger (0) Sample point Bus Sampling, Bit
Destuffing

Stuff Bits are removed
from can_rx and
provided as destuffed
data to Protocol
control.

2 Process RX Trigger (1) One clock cycle
after Sample
point

Protocol Control Destuffed data are
processed by Protocol
control, value of
following transmitted
bit is determined and
provided as TX data
before bit stuffing”

3 Stuff TX Trigger Start of Bit time Bit Stuffing Stuff bit is inserted to
TX data before bit
stuffing and propagated
to can_tx.

19

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.7: Pipeline stages - algorithm

Step Step Description Pipeline
Stage

Module

1 can_rx input is synchronised to System clock domain. Delay imposed by
synchronisation is treated as wire delay and it is ignored.

-

2 Bus value is sampled to save information about previous sampled bus
value for next edge detection. Synchronisation edges are detected on
can_rx and propagated to Prescaler. can_rx value is propagated to Bit
Destuffing module.

Destuff Bus Sampling

3 Bit de-stuffing is performed in Sample point, and destuffed data are
provided on output of Bit Destuffing module.

Destuff Bit Destuffing

4 CRC from RX bit value with stuff bits included (can_rx) is calculated. Destuff CAN CRC
5 Destuffed data are sampled by Protocol control, RX shift register is

shifted, TX shift register is preloaded by following bit to be transmitted,
Protocol control FSM state is updated.

Process Protocol Control

6 CRC from destuffed data is calculated. Process CAN CRC
7 Stuff bits are inserted to TX bit value on output of TX shift register by

Bit Stuffing module. Value on output of Bit Stuffing module is
propagated to can_tx output.

Stuff Bit Stuffing

8 TX shift register is shifted. Stuff Protocol Control
9 CRC from output of TX shift register (TX data before bit stuffing) is

calculated.
Stuff CAN CRC

10 CRC from TX data with bit stuffing is calculated. As this stage does not
affect data transmitted on the bus in the actual bit, it is not considered as
separate pipeline stage.

Stuff + 1
clock cycle

CAN CRC

3.9 CAN Frame metadata

Through this document, term “frame metadata” is used for description of CAN frame information which are described
in Table 3.8. In TXT Buffers and RX Buffer, metadata are stored in Frame Format word as is shown in Chapter 4 of [2].

3.10 CAN Frame format

CAN frame spans multiple 32-bit words in TXT Buffers and within RX Buffer RAMs (see 3.17 and 3.15). One TXT
Buffer always contains single frame. RX Buffer contains multiple frames one after another in a RX Buffer RAM. Format
of CAN frame within these memories is the same with following exceptions:

• ESI bit in TXT Buffer has no meaning while in RX Buffer ESI has value of received ESI bit on CAN bus

• RWCNT field in TXT Buffer has no meaning while in RX Buffer it contains number of words that current frame
takes in RX Buffer without Frame Format word).

• FRAME_TEST_W word is available only in TXT Buffer RAM, not in RX Buffer RAM.

Meaning of memory words within CAN frame is described in Table 3.9. Meaning of individual bits can be found in
Chapter 5 of [2].

20

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.8: CAN frame metadata

Name Abbreviation Possible values Description
Identifier type ID_TYPE BASE (0), EXTENDED

(1)
Distiguishes frames with base identifier (BASE)
only and frames with identifier extension
(EXTENDED).

Frame type FR_TYPE NORMAL_CAN (0),
FD_CAN (1)

Distiguishes CAN 2.0 frames and CAN FD frames.

Remote
Transmission
Request

RTR NO_RTR_FRAME (0),
RTR_FRAME (1)

Distinguishes between Data Frame and Remote
frame. When frame is CAN FD frame, RTR bit
has no meaning.

Bit Rate Shift flag BRS BR_NO_SHIFT (0),
BR_SHIFT (1)

Distinguishes if bit rate will be shifted in CAN FD
frame or not. This bit has no meaning in CAN 2.0
frames.

Error State
Indicator

ESI ESI_ERR_ACTIVE (0),
ESI_ERR_PASSIVE
(1)

Value of received ESI bit. This bit has no meaning
in CAN 2.0 frames. This bit has no meaning in
TXT buffers. Value of transmitted ESI bit is
always given by actual Fault confinement state.

Data length code DLC 0 - 15 as defined in [1] Data length code determines length of data field
within CAN frame.

Table 3.9: CAN frame format - memory words

Name of memory
word

Name in register
map (see [2])

Description

Frame Format FRAME_FORM_W Contains DLC, ESI, Frame Type, Identifier Type, BRS.
Identifier IDENTIFIER_W Contains base identifier base and identifier extension.
Timestamp Low TIMESTAMP_L_W Contains lower 32-bits of CAN frame Timestamp (in RX Buffer as

sampled during frame reception, in TXT Buffer as inserted by user).
Timestamp High TIMESTAMP_U_W Contains upper 32-bits of CAN frame Timestamp (in RX Buffer as

sampled during frame reception, in TXT Buffer as inserted by user).
Data words DATA_X_Y_W Contain CAN frame data payload transmitted/received during data

frame field.
Frame Test FRAME_TEST_W Contains metadata for intentional corruption of transmitted CAN

frames.

3.11 Test mode

CTU CAN FD is in Test mode when MODE[TSTM] = ’1’. Features of test mode are listed in Table 3.10.

21

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.10: Test mode features

Relevant
register

Description

CTR_PRES In test mode CTR_PRES is writable and allows setting values of transmitt error counter, receive
error counter, nominal error counter and data error counter.

EWL In test mode EWL register is read-write therefore Error warning limit is configurable by SW.
ERP In test mode ERP register is read-write and Error passive threshold is configurable by SW. When

either transmitt error counter or receive error counter reaches Error Passive threshold, unit
becomes error passive.

TST_CONTROL,
TST_DEST,
TST_WDATA,
TST_RDATA

In test mode Test registers are writable, therefore it is possible to directly read/write RX buffer
RAM and TXT buffer RAMs. This feature is available only when sup_test_registers = true.

FRAME_TEST_WCTU CAN FD uses bits in FRAME_TEST_W to intentionally corrupt transmitted CAN frames.

3.12 ISO vs NON-ISO CAN FD

CTU CAN FD supports both types of CAN FD protocol, so called ISO FD (according to [1]) and also non-ISO FD
(according to [2]). By default ISO CAN FD is selected. Selection between ISO FD and NON-ISO FD is done by SET-
TINGS[NISOFD] register. This bit shall be changed only when device is disabled (SETTINGS[ENA] = ’0’). Differences
between ISO and NON-ISO FD are following:

• Stuff count and Stuff parity bit fields are not transmitted by transmitter, nor received by receiver.

• Stuff count and Stuff parity are not considered as part of CRC Check.

• Highest bit of CRC_17 and CRC_21 CRC_INIT_VECTOR is 0.

3.13 Integration vs. Reintegration

In this document term “Integration” means attempt to detect 11 consecutive recessive bits after logic 1 was written to
SETTINGS[ENA] (CTU CAN FD was turned on). Term “Reintegration” means attempt to detect 129 ocurrences of 11
consecutive recessive bits after node went bus off and logic 1 was written to COMMAND[ERCRST] (SW Requests to
rejoin the bus).

22

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.14 CAN Core

File: can_core.vhd

CAN Core implements following functionality:

• Transmission and reception of CAN frame.

• Control of TXT buffers and RX buffer.

• Bit stuffing, bit destuffing, CRC calculation and CRC check.

• Fault confinement and Operation control (transmitter, receiver, idle).

• Bus traffic counters.

• Configuration of bit rate for Prescaler and synchronisation.

CAN core block diagram is shown in Figure 3.6. CAN core is structural entity which instantiates other modules and by
itself it implements nearly no logic. An exception to this rule are two multiplexers as shown in Figure 3.6. Multiplexor on
TX datapath (green color) multiplexes between transmitted data after bit stuffing or constant recessive value. Constant
recessive value is sent to the bus in bus monitoring mode. Multiplexor on RX datapath (red color) multiplexes input data
to Bit destuffing module. During normal operation, can_rx input is used. When secondary sample point is used, data
after bit stuffing are taken (transmitted data are looped back to make sure that Protocol control FSM receives proper
value as real received value can be delayed by several bits). In bus monitoring mode, data afer bit stuffing logically ORed
with can_rx from input of CAN core (this corresponds to re-routing transmitted bit value internally as defined in 10.14
of [1]).

23

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

can_core

protocol_control can_crc

protocol_control_fsm

tx_shift_register

rx_shift_register

control_counter

retransmitt_counter

error_detector

crc_calc(15)

crc_calc(17)

crc_calc(21)

bit_stuffing

bit_destuffing

fault_confinement

operation_control

fault_confinement_rules

fault_confinement_fsm

error_counters

TX Metadata

TXT Buffer
word

TXT Buffer
Pointer

Frame valid

Transmission
Valid

Reception Valid

Reception Abort

Store Metadata

Store Data
RX Data

Word

SOF Pulse

Se
t T

ra
n

sm
itter

Se
t R

e
ceive

r

Se
t Id

le

A
rb

itratio
n

 Lo
st

Is Id
le

Is R
ece

iver

Is Tran
sm

itte
r

Sa
m

p
le

 C
o

n
tro

l

E
rro

r D
etected

P
rim

a
ry E

rro
r

Tra
n

sm
issio

n
 valid

R
e

cep
tio

n
 V

a
lid

E
rro

r D
elim

iter Late

A
ctive

 Erro
r,

O
verlo

a
d

 Flag

Is Erro
r A

ctive

Is Erro
r P

assive

Is B
u

s o
ff

TX Data (No Bit Stuffing)

RX Data (No Bit Stuffing)

TX Data
(With Bit Stuffing)

RX Data
(With Bit
Stuffing)

RX Data

CRC Enable

CRC Speculative Enable

Calculated CRCs

Stuff Enable

De-Stuff Enable

Stuff Length
Fixed Stuff

Destuffed

Data Halt

TX Data
Recessive

trigger_multiplexor

TX
Trigger

RX
Triggers

Destuffed
Data Halt

CRC Triggers

Bit Stuffing Trigger

Bit De-Stuffing Trigger

Protocol control Triggers

Destuff counter

Stuff counter

bus_traffic_counters
Reception Valid

Transmission
Valid

TX
C

o
u

n
ter

R
X

C
o

u
n

ter

Legend:
TX Data stream RX Data stream

Fault Confinement
Control TXT Buffer Interface RX Buffer Interface

Figure 3.6: CAN Core - Block diagram

24

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.14.1 Protocol control

File: protocol_control.vhd

Protocol control implements following functionality:

• Transmission and reception of CAN frames.

• Handling of content-based arbitration (further in this document reffered to only as arbitration).

• Handling of bus integration state, error frame and overload frames.

• CRC check and error detection.

• Storing of received CAN frame to RX buffer.

• Reading of transmitted CAN frame from TXT buffers.

• Control of TXT buffers and TX arbitrator via HW commands.

• Counting number of frame retransmissions.

• Control synchronisation (no synchronisation, hard synchronisation, resynchronisation)

• Control bit rate switching (Nominal sample, Data sample, Secondary sample)

Protocol control diagram is shown in Figure 3.7. Protocol control is structural entity which only instantiates other
modules and by itself it implements no logic.

25

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

protocol_control

protocol_control_fsm

control_counter

reintegration_counter

retransmitt_counter

tx_shift_register

rx_shift_register

error_detector

RX Data

TX Data

Store signals

Enable
Input Selector

RX Metadata
RX Data Word
RX Identifier

Clear

Load signals

Enable

Input Selector
Clear

RX Trigger

TX Trigger

RX CRC

CRC

RX Stuff
Count

Stuff Count

Error frame
request

CRC Match Error Counters
Unchanged

CRC Source
Error Capture

CRC Check

Is Tran
sm

itte
r

TXT Buffer Word

TX Metadata

Is R
ece

iver

Is Id
le

Preload

Zero

Preload

Expired
Value

Byte Index

Counted
Byte

Preload

Limit Reached

TXT Buffer
Changed

Is Erro
r A

ctive

Is Erro
r P

assive

Is B
u

s-o
ff

Reception Valid
Reception Abort

Store Metadata

Store Data
SOF Pulse

TXT Buffer Pointer

Frame valid

Transmission Valid

Sample Control

Error Detected

Primary Error

Error Delimiter
Late

Active Error,
Overload Flag

HW Command

Legend:
TXT Buffer Interface RX Buffer Interface

Figure 3.7: Protocol control - Block diagram

26

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Protocol control FSM

File: protocol_control_fsm.vhd

Protocol control FSM implements following functionality:

• Transmission and reception of CAN frames.

• Controls Control counter, Retransmitt Counter, Re-integration counter.

• Controls TX Shift Register.

• Controls RX Shift Register. Storing values from RX Shift register to RX Buffer.

• Reading of transmitted frame from TXT Buffer (addressing and reading data words from TXT Buffer).

• Storing of received frame to RX Buffer.

• Controls measurement of transmitter delay.

• Controls TXT Buffers and TX Arbitrator via HW Commands.

• Controls synchronisation (no synchronisation, hard synchronisation, resynchronisation)

• Controls bit rate switching (Nominal Sample, Data Sample, Secondary Sample).

• Performs form error detection.

• Evaluate results of CRC check.

• Handles arbitration.

Protocol control FSM state transition diagam is shown in Figure 3.8. Rules for Protocol control FSM state transitions
are described in Table 3.11. Protocol control FSM does not change its state in any other moment. Note that regular
change of Protocol control FSM state corresponding to e.g. transition from control field to data field occurs one clock
cycle after sample point (in Process pipeline stage).

Table 3.11: Protocol control state transition rules

Condition of state
transition

Pipeline stage when
transition occurs.

Description

Regular condition Process Transition corresponds to regular change of CAN frame field (e.g. stuff
count to CRC).

Error frame
request

One clock cycle
after Process

Transition corresponds to start of active error flag or passive error flag
and can occur from any state of Protocol control FSM.

27

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Error Frame Request when
unit is Error Active

Error Frame Request when
unit is Error Passive

SOF

RTR/SRR/R1BASE ID IDE

ID
EXTENSION

EDL/R0RTR/R1

EDL/R1

R0/EXT

R0 FD BRS

ESI

Stuff Count Data CRC

CRC
Delimiter

ACK

ACK
Delimiter

EOF

Overload
Flag

Overload
Wait

Overload
Delimiter

Suspend
Reintegration

Wait

Reintegrating

Off Integrating

Passive Error
Flag

Error
Delimiter Wait

Error
Delimiter

RX Data
Recessive

RX Data
Dominant

RX Data
Recessive

RX Data
Dominant

ISO FD and
FD Frame

Non-ISO FD or
CAN 2.0 frame

CAN FD Frame

CAN 2.0
Frame

ACK FD 1

ACK FD 2

RX Data
Recessive

ISO FD and
No Data Field Non-ISO FD and No Data Field

DLC

No TX Frame
Ready

Node is Bus-off

Error Passive
Transmitter

Node disabled
Node

enabled

TX Frame ready or RX Data Dominant

RX Data
Dominant

Intermission

Idle

TX Frame
Ready and

RX Data Recessive

RX Data Dominant

RX Data
Dominant

RX Data Recessive

Active Error
Flag

RX Data
Recessive

RX Data
Dominant

RX Data
Recessive

RX Data
Recessive

Not in ROM mode

RX Data
Recessive

State duration
controled by

Control Counter

Legend:

Arbitrary state
duration

State duration
= 1 bit

TX Frame ready or RX Data DominantNode is Bus-off

Error Flag Too
Long

7 Dominant
bits sampled

RX Data
Recessive

Protocol
exception

Protocol exception

Protocol
exception

Overload Flag
Too Long

7 Dominant
Bits sampled

RX Data
Recessive

Error Frame Request in
Restricted Operation mode

In ROM Mode

RX Data
Dominant

Figure 3.8: Protocol control FSM

28

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Control counter

File: control_counter.vhd

Control counter measures duration of CAN frame fields which last longer than 1 bit. These fields and according config-
uration of Control counter are shown in Table 3.12. Control counter is preloaded in Process pipeline stage and it counts
towards zero. Control counter counting is controlled by Protocol control FSM. It is decremented by 1 in each bit of CAN
frame field in Process pipeline stage. When Control counter is equal to 1 and 0, this is signalled to Protocol control FSM.
This situation indicates one bit before end of CAN frame field or last bit of CAN frame field. A current CAN frame field
ends when Control counter is zero. Control counter is not counting during CAN frame fields which last only 1 bit (e.g.
IDE bit), nor during fields which might last arbitrary number of bits (bus idle). An example of Control counter operation
during base identifier in CAN frame is shown in Figure 3.9.

Table 3.12: Control counter

CAN Frame field Control counter preload value
Base identifier 10
Identifier extension 17
Data length code 3
Data Depends on transmitted / received data field length.
CRC 14, 16, 20 - depends on length of CRC sequence
Stuff count (+ Stuff parity) 3
End of Frame 7
Interframe space 2
Suspend transmission 7
Integration 10
Error flag, overload flag 5
Error delimiter, Overload delimiter 7
Re-integration 11, preloaded 129 times.

CAN frame field SOF Base Identifier SRR IDE

Control counter value 10 9 8 7 6 5 4 3 2 1 0

Figure 3.9: Control counter operation

Control counter module contains a complementary counter which counts from 0. Complementary counter is incre-
mented by 1 each bit time in Process pipeline stage and it counts only during data field. Complementary counter
provides information that data byte has elapsed (when counter mod 8 == 0), or whole memory word has elapsed (when
counter mod 32 == 0). Complementary counter addresses memory words between addresses 4 (DATA_1_4_W) and 19
(DATA_61_64_W) in TXT Buffer. Complementary counter decodes address of Data memory word within TXT Buffer
according to following equation:

Memory word index =
(
Control counter

32

)
+ 4

Control counter module implements Arbitration lost capture register. Arbitration lost capture register stores position
within CAN frame at which arbitration was lost. Arbitration lost capture register is loaded when arbitration lost is
signalled by Protocol Control FSM in Process pipeline stage. Arbitration lost capture saves current value of Control
counter (determines bit at which arbitration was lost) and bit field type within arbitration (base identifier, IDE bit,

29

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

identifier extension, etc.) when arbitration was lost. Arbitration lost capture register is readable by SW via ALC register.
Meaning of values in Arbitration lost capture register is described in [2]. An example of Arbitration lost capture register
is shown in Figure 3.10.

CAN frame field SOF Base Identifier SRR IDE

Control counter value 10 9 8 7 6 5 4 3 2 1 0

Arbitration lost

ALC[ALC_BIT] 6

ALC[ALC_ID_FIELD] 00

Figure 3.10: Arbitration lost capture

Retransmitt counter

File: retransmitt_counter.vhd

Retransmitt counter controls number of retransmissions of current CAN frame from dedicated TXT Buffer. Retransmitt
counter counts from zero, and it is controlled by Protocol control FSM. Retransmitt counter counts only when retrans-
mitt limitation is enabled by user (SETTINGS[RTRLE] = ’1’), otherwise it stays at 0. When retransmitt limitation is
disabled (SETTINGS[RTRLE] = ’0’) frame transmission is attempted indefinite amount of times. Retransmitt counter
is incremented by 1 when arbitration is lost, or when error frame transmission is requested by Error detector (reffer to
3.14.1).
When error frame and arbitration loss occur in the same frame, retransmitt counter is incremented only once (such a
situation is shown in Figure 3.12). When multiple error frames occur in the same frame (e.g. due to error during error
frame), retransmitt counter is also incremented only once.
When Retransmitt counter reaches retransmitt limit (SETTINGS[RTRTH]), it signals this to Protocol control FSM. In
case of next arbitration loss or error frame request, Protocol control FSM stops transmitting actual frame, signals this
to TXT Buffer and TXT Buffer moves to TX Failed state (see Figure 3.30). When unit is a receiver without attempt to
transmitt frame (no frame was available during bus idle, intermission), retransmitt counter is not modified during this
frame. When unit is error passive and transmission of a frame is not succesfull, unit becomes receiver of next frame (due
to suspend transmission field) without attempting to transmitt a frame. If error occurs during next frame, retransmitt
counter is not incremented. Possible configurations of retransmitt limit are shown in Table 3.13.
Retransmitt counter is cleared when TXT Buffer used for transmission changes between two consecutive transmissions
(another TXT Buffer with another TX Frame selected by TX Arbitrator), as is described in Table 3.54. Retransmitt
counter is cleared upon succesfull transmission (TXT Buffer goes to TX OK state) or when transmission fails (TXT Buffer
goes to TX Failed state). Retransmitt counter is also cleared when TXT Buffer which is currently used for transmission
goes to Aborted state.

30

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.13: Retransmitt limit configuration

SETTINGS[RTRTH]SETTINGS[RTRLE] Behaviour
- 0 Frame transmission is attempted without any limitation until unit turns

Bus-off.
0 1 Frame transmission is attempted only once, there is no retransmission

attempt after first failed transmission (so called one-shot mode).
1 - 15 1 Frame transmission is attempted SETTINGS[RTRTH] times.

CAN Bus CAN frame Error frame CAN frame Error frame CAN frame Error frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX Error

Figure 3.11: Retransmitt counter operation

CAN Bus CAN frame Error frame CAN frame Error frame CAN frame Error frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Arbitration lost

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Receiver Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX Error

Figure 3.12: Retransmitt counter - arbitration loss and error frame

CAN Bus CAN frame Error frame CAN frame Error frame CAN frame

Retransmitt counter 0 1 2 0

Retransmitt limit 2

Transmission type Initial transmission First re-transmission Second re-transmission

Operational state Idle Transmitter Idle Transmitter Idle Transmitter Idle

TXT Buffer state Ready TX in Progress Ready TX in Progress Ready TX in Progress TX OK

Figure 3.13: Retransmitt counter - second retransmission succesfull

31

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Reintegration counter

File: reintegration_counter.vhd

Reintegration counter counts 129 consecutive ocurrences of 11 consecutive recessive bits after unit turned bus-off.
Reintegration counter counts only during reintegration, not during initial bus integration. It is controlled by Protocol
control FSM, it counts from zero and it is cleared when unit is bus-off and it receives command to reset error counters (by
writing logic 1 to COMMAND[ERCRST] register). Reintegration counter is incremented by 1 after each 11 consecutive
recessive bits are received. 11 consecutive recessive bits are measured by Control counter. If during reintegration dominant
bit is detected, Control counter is pre-loaded again to 10 (there was dominant bit before 11 consecutive recessive bits
were reached). When reintegration counter reaches 128 (0-128 = 129 times), it signals this to Protocol control FSM
(Protocol control FSM becomes Idle), unit becomes error active again and operation control state is changed to Idle. An
example use case of reintegration counter operation is shown in Table 3.14.

Table 3.14: Reintegration counter - use case

Step Action
1 CTU CAN FD is enabled by writing SETTINGS[ENA] = ’1’. After bus integration is over, unit becomes

error active.
2 CTU CAN FD takes part in bus communication. Due to error frames, it turns first error passive and then

bus-off.
3 SW is notified of such an event by FCS interrupt, then SW reads FAULT_STATE register and finds out

that unit is bus-off.
4 SW decides that it wants the unit to join the network again. SW writes logic 1 to COMMAND[ERCRST]

(so called “error counter reset” command or “reintegration request”)
5 Reintegration counter is cleared. Control counter is preloaded to 10.
6 Control counter is being decremented by 1 for each recessive bit received by Protocol Control FSM. If

dominant bit is detected, Control counter is preloaded to 10 again.
7 After 11 consecutive recessive bits are received, Control counter is 0, it signals this to Protocol control FSM.
8 Protocol control FSM increments Reintegration counter by 1.
9 After 129 repetitions of 11 consecutive recessive bits (note that there can be CAN frames between

consecutive sequences of 11 consecutive recessive bits, these frames are ignored by CTU CAN FD),
Reintegration counter is 128. Reintegration counter signals this to Protocol Control FSM.

10 Protocol control FSM becomes Idle, CTU CAN FD becomes error active and it is ready to receive/transmitt
frames again.

32

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

TX shift register

File: tx_shift_reg.vhd

TX shift register is 32 bit shift register which transmitts given bit sequence to the output of Protocol control module.
TX shift register is preloaded by Protocol control FSM in Process pipeline stage when new data sequence is about to be
transmitted, thus output value is also valid after Process pipeline stage of the same bit. TX shift register is shifted by
one position in Stuff pipeline stage of each bit on CAN bus during multi-bit frame fields. When stuff bit is inserted, TX
shift register is not shifted (Protocol control is halted for one bit).
TX shift register is preloaded according to Table 3.15. TX shift register is enabled only as long as unit is transmitter, TX
shift register is not shifting when unit is receiver, nor during CAN frame fields which last only one bit (SOF, ACK, etc.),
nor during fields which transmitt constant sequence (EOF, error flag, etc.). In such case constant value is transmitted
on its output. TX shift register shifts from lowest bit index to highest bit index (shifting up). Transmission of single bits
(e.g. SOF, ACK) or constant sequences (e.g. active error flag, EOF) is handled by separate logic inside TX shift register,
and has higher priority than transmission from TX shift register. Rules for handling of these situations are described in
Table 3.16. An example of TX shift register operation during CAN frame is shown in Table 3.17

Table 3.15: TX shift register preload rules

CAN frame fields in which TX shift register is
preloaded

Preloaded bit sequence Where the bit sequence is preloaded
from

SOF, suspend transmission, intermission, idle Base identifier Identifier capture register in TX
Arbitrator.

IDE bit Identifier extension Identifier capture register in TX
Arbitrator.

r0 bit of CAN 2.0 frame with identifier
extension, EDL/r0 bit. ESI bit

Data length code Metadata capture registers in TX
Arbitrator.

Last bit of data length code, in data field when
multiple of 32 bits of data field were
transmitted.

Data word (4 bytes) for
transmission.

TXT Buffer RAM data output on
Port B.

Last bit of data length code in ISO CAN FD
frames without data field, in last bit of data
field in ISO CAN FD frames.

Stuff count and stuff
parity.

Counter of stuffed bits in Bit
Stuffing module.

Last bit of stuff count, last bit of data field in
non-ISO CAN FD frames (no stuff-count), last
bit of data length code in non-ISO CAN frames
with no data field.

Calculated CRC. CRC calculation register in CAN
CRC module.

Table 3.16: TX Shift register - handling of special cases

Bit value transmitted Special conditon
Dominant Error frame request - unit is error active
Recessive Error frame request - unit is error passive
Dominant Protocol control FSM requests transmission of

dominant bit
Recessive TX shift register is disabled and none of the above

conditions apply. This situation corresponds to
transmission of continous stream of recessive bits.

33

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.17: TX shift register - example of operation

CAN Frame: Base identifier: 0x123
DLC: 0x1
Data: 0xAB
Frame Type: CAN FD Frame
Identifier Type: Base Identifier

Bit on CAN bus TX Shift Register status,
left-most bit transmitted on output of Protocol Control,
transmitted sequence boldom

SOF 00000000 00000000 00000000 00000000
Base ID - Bit 1 00100100 01100000 00000000 00000000 (Base ID: 0x123: 00100100011)
Base ID - Bit 2 01001000 11000000 00000000 00000000
Base ID - Bit 3 10010001 10000000 00000000 00000000
Base ID - Bit 4 00100011 00000000 00000000 00000000
Base ID - Bit 5 01000110 00000000 00000000 00000000
Base ID - Bit 6 10001100 00000000 00000000 00000000
Base ID - Bit 7 00011000 00000000 00000000 00000000
Base ID - Bit 8 00110000 00000000 00000000 00000000
Base ID - Bit 9 01100000 00000000 00000000 00000000
Base ID - Bit 10 11000000 00000000 00000000 00000000
Base ID - Bit 11 10000000 00000000 00000000 00000000
RTR 00000000 00000000 00000000 00000000
IDE 00000000 00000000 00000000 00000000
r0 00000000 00000000 00000000 00000000
DLC - Bit 1 00010000 00000000 00000000 00000000 (DLC: 0x1 0001)
DLC - Bit 2 00100000 00000000 00000000 00000000
DLC - Bit 3 01000000 00000000 00000000 00000000
DLC - Bit 4 10000000 00000000 00000000 00000000
Data - Bit 1 10101011 00000000 00000000 00000000 (Data: 0xAB 10101011)
Data - Bit 2 01010110 00000000 00000000 00000000
Data - Bit 3 10101100 00000000 00000000 00000000
Data - Bit 4 01011000 00000000 00000000 00000000
Data - Bit 5 10110000 00000000 00000000 00000000
Data - Bit 6 01100000 00000000 00000000 00000000
Data - Bit 7 11000000 00000000 00000000 00000000
Data - Bit 8 10000000 00000000 00000000 00000000

34

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

RX shift register

File: rx_shift_reg.vhd

RX shift register is 32 bit shift register which receives bit sequence and stores parts of this sequence to dedicated capture
registers when commanded by Protocol control FSM. RX shift register operates in two basic modes as is described in
Table 3.18. Mode of RX shift register determines whether input of each byte in shift register is taken from output of
previous byte, or directly from input of RX shift register. Diagram of RX shift register is shown in Figure 3.14. Shifting
of each byte of RX shift register is enabled separately and it is controlled by Protocol control FSM. RX Shift register
is shifting during multi-bit fields on CAN bus and it shifts by one position each bit in Process pipeline stage. This
corresponds to reception of bit on CAN bus. RX shift register shifts up. RX shift register stores part of its content to
either a dedicated capture register, or RX Buffer memory when signalled to do so by Protocol control FSM as described
in Table 3.19. Received CRC sequence is not stored into any capture register and it is used for CRC check directly from
RX shift register (CRC frame field is the last field of CAN frame which is shifted into RX shift register, therefore after
CRC frame field, CRC remains in RX shift register).
RX shift register is not used till the end of frame and its content remains stable. Other one bit metadata information
are stored to dedicated capture registers directly from input of RX shift register in corresponding fields of CAN frame as
described in Table 3.20. An example of RX shift register operation is shown in 3.21

Table 3.18: RX shift register modes

RX Shift
register
mode

Bit fields on CAN bus
when mode is used.

Byte which is enabled. Description

Linear
mode

Base identifier,
identifier extension,
DLC, CRC sequence,
Stuff count

All bytes are enabled. Shift register forms single 32-bit shift register.
Inputs of each next byte are connected to
outputs of previous byte. All bits are shifted
simultaneously.

Byte mode Data field Only one byte is
enabled at any time.
Enabled byte is given
by index of actually
received data field
byte on CAN bus.

Shift register forms 4 separate 8-bit shift
registers. Inputs of each byte are connected to
input of RX shift register. Only 1 shift register
(one byte) is shifted at any time.

Table 3.19: RX shift register - stored sequences

Bit on CAN bus in which
RX shift register stores part of its
content.

Meaning of stored sequence Destination where value is stored.

Last bit of base identifier Base identifier Capture register.
Last bit of identifier extension Extended identifier Capture register.
Last bit of data length code Data length code Capture register.
Last bit of data field or last bit of
memory word within data field (after
each 32 bits).

4 bytes (single memory word) of
data field.

RX Buffer RAM memory.

Last bit of stuff count Grey coded stuff count + stuff
parity

Capture register.

35

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.20: RX shift register - stored single bits

Protocol control FSM
state

Meaning of stored bit Corresponding
metadata signal

Destination where value
is stored.

BRS Value of bit rate switch bit BRS Capture register
ESI Value of error state indicator bit ESI Capture register
IDE Value of identifier extension bit ID_TYPE Capture register
RTR/SRR/R1,
RTR/R1

Value of remote transmission
request Bit

RTR Capture register

EDL/R0, EDL/R1 Value of extended data length /
flexbile data-rate format bit

FR_TYPE Capture register

D Q

CE

Input

8 Bit
shift

register

D Q

CE

8 Bit
shift

register

D Q

CE

8 Bit
shift

register

D Q

CE

8 Bit
shift

register

Clock
Enables

(separate
for each

byte)

Input
Selection
(Mode)

Status

Capture registers

Status Status Status

Capture
Control
Signals

RX ID

RX Metadata

RX Stuff Count

RX CRC,
RX Data word

rx_shift_reg

Figure 3.14: RX shift register - Block diagram

36

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.21: RX shift register operation

CAN Frame: Base ID: 0x123
DLC: 0x2
Data: 0xAB 0xCD
Frame Type: CAN FD Frame
Identifier Type: Base Identifier

Bit on CAN bus Mode RX shift Register status,
right most bit is received on input of Protocol control,
received sequence boldom

SOF - 00000000 00000000 00000000 00000000
Base ID - Bit 1 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 2 Linear 00000000 00000000 00000000 00000000
Base ID - Bit 3 Linear 00000000 00000000 00000000 00000001
Base ID - Bit 4 Linear 00000000 00000000 00000000 00000010
Base ID - Bit 5 Linear 00000000 00000000 00000000 00000100
Base ID - Bit 6 Linear 00000000 00000000 00000000 00001001
Base ID - Bit 7 Linear 00000000 00000000 00000000 00010010
Base ID - Bit 8 Linear 00000000 00000000 00000000 00100100
Base ID - Bit 9 Linear 00000000 00000000 00000000 01001000
Base ID - Bit 10 Linear 00000000 00000000 00000000 10010001
Base ID - Bit 11 Linear 00000000 00000000 00000001 00100011 (Base ID: 0x123:

00100100011)
RTR - 00000000 00000000 00000001 00100011
IDE - 00000000 00000000 00000001 00100011
r0 - 00000000 00000000 00000001 00100011
DLC - Bit 1 Linear 00000000 00000000 00000010 01000110
DLC - Bit 2 Linear 00000000 00000000 00000100 10001100
DLC - Bit 3 Linear 00000000 00000000 00001001 00011001
DLC - Bit 4 Linear 00000000 00000000 00010010 00110010 (DLC: 0x2 0010)
Data Byte 0 - Bit 1 Byte 00000000 00000000 00010010 00110011
Data Byte 0 - Bit 2 Byte 00000000 00000000 00010010 00110010
Data Byte 0 - Bit 3 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 4 Byte 00000000 00000000 00010010 00111010
Data Byte 0 - Bit 5 Byte 00000000 00000000 00010010 00110101
Data Byte 0 - Bit 6 Byte 00000000 00000000 00010010 00101010
Data Byte 0 - Bit 7 Byte 00000000 00000000 00010010 01010101
Data Byte 0 - Bit 8 Byte 00000000 00000000 00010010 10101011 (Data: 0xAB 10101011)
Data Byte 1- Bit 1 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 2 Byte 0000000 00000000 00010011 10101011
Data Byte 1- Bit 3 Byte 0000000 00000000 00010110 10101011
Data Byte 1- Bit 4 Byte 0000000 00000000 00011100 10101011
Data Byte 1- Bit 5 Byte 0000000 00000000 00011001 10101011
Data Byte 1- Bit 6 Byte 0000000 00000000 00110011 10101011
Data Byte 1- Bit 7 Byte 0000000 00000000 01100110 10101011
Data Byte 1- Bit 8 Byte 0000000 00000000 11001101 10101011 (Data: 0xCD 1100 1101)

37

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Error detector

File: err_detector.vhd

Error detector processes errors detected by other modules, decides whether these errors are valid and creates error frame
request to Protocol control FSM. Errors are detected in Process pipeline stage and error frame request is provided to
Protocol control FSM one clock cycle after Process pipeline stage. Error frame request is registered to avoid combinatorial
loops between Error detector and Protocol control FSM. Error types and modules of their origin are described in Table
3.22. Error detector containts Error code capture register which stores type and position of last error. Error code capture
register is loaded when Error detector creates error frame request to Protocol control FSM. Reffer to [2] for description
of Error code capture register. An example of error detection (form error) with details of actions in each pipeline stage
is shown in Figure 3.15.

Table 3.22: Error detection rules (part 1)

Error
type CAN frame

fields when
error is
detected

CAN Frame
Fields where
Error can’t occur

Module
where
error is
detected

Description

Bit
er-
ror

SOF,
control,
data, stuff
count,
CRC, CRC
delimiter

Can occur
anywhere

Bit error
detector
in Bus
sampling
module

Bit error is detected when transmitted and received value
of bit on CAN bus differs. Reffer to 3.21 for details of bit
error detection by Bus sampling module. Bit error
detection by Bus sampling module is enabled always, it is
only ignored in bit fields as described in 3.26.

Arbitration
field

Can occur
anywhere

Protocol
control
FSM

In arbitration field, bit error detected by Bus sampling is
ignored by Error detector. Instead bit error detected by
Protocol control FSM is considered. Protocol control
FSM detects bit error during arbitration field only when
transmitted bit was dominant and received bit is
recessive.

Stuff
error Arbitration

field,
control,
data, stuff
count, CRC

Intermission, idle,
suspend, error
frame, overload
frame, end of
frame, CRC
delimiter, ACK,
ACK delimiter

Bit
destuff-
ing
module

Stuff error is detected by Bit destuffing module as
described in 3.14.5. If fixed stuff bit does not have
oposite value as previous bit, this error is detected as
stuff error by Bit destuffing module, but error is stored as
form error in Error code capture register.

Form
error SOF,

control,
stuff count,
CRC, EOF

Arbitration, data
field, ACK,
intermission,
suspend
transmission

Protocol
control
FSM, Bit
destuff-
ing
module
for fixed
stuff bits.

Form error is detected by Protocol Control FSM by
checking received bit during fixed frame fields as
described in 3.24. Protocol control signals form error to
Error detector and based on this, Error frame request is
signalled one clock cycle after Process pipeline stage.

38

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.23: Error detection rules (part 2)

Error
type CAN frame

fields when
error is
detected.

CAN frame fields
where error can’t
occur.

Module
where
error is
detected

Description

CRC
error ACK

delimiter
SOF, Arbitration,
Control, Data,
Stuff Count,
CRC, CRC
Delimiter, ACK,
End of Frame,
Intermission, Bus
idle, Error frame,
Overload frame

Protocol
control
FSM

Comparison of RX CRC with calculated CRC is executed
in Error detector. Since after CRC field, RX shift register
is not shifting and CRC module is not calculating CRC
anymore, comparison shows valid result from CRC
delimiter further. Based on result of comparison “CRC
match” is signalled to Protocol control FSM. If unit is
receiver and “CRC match” is not signalled to Protocol
control FSM in ACK delimiter, Protocol control FSM
detects CRC error (in Process pipeline stage of ACK
delimiter) and propagates it back to Error detector. Error
detector forms Error frame request for Protocol control
FSM. An example of CRC check mechanism and
detection of CRC error is shown in Figure 3.16.

ACK
error ACK SOF, Arbitration,

Control, Data,
Stuff Count,
CRC, CRC
Delimiter, ACK
Delimiter, End of
Frame,
Intermission, Bus
idle, Error frame,
Overload frame

Protocol
control
FSM

ACK error is detected by Protocol control FSM when unit
is transmitter, recessive bit is received and unit is not in
Self test mode (frame valid also without ACK dominant).

Table 3.24: Form error detection

CAN frame field Condition
SOF If recessive bit is received, form error is detected.
r0 bit after EDL/r1 bit in frame
with extended identifier or r0 bit in
CAN FD frames

If recessive bit is received, form error is detected when SETTINGS[PEX] =
’0’. Recessive bit would mean extending beyond CAN FD standard (CAN
XL). When SETTINGS[PEX] = ’1’, form error is not detected and CTU
CAN FD enters integration.

CRC delimiter, ACK delimiter If dominant bit is received, form error is detected.
EOF If dominant bit is detected at all but last bit of EOF, form Error is

detected. At last bit dominant bit means Error frame only for transmitter.
For receiver, it means Overload condition.

All but last bit of error delimiter and
overload delimiter If dominant bit is received, form error is detected.

39

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.26: Bit error by Bus sampling module exceptions

Frame Field/
Protocol control
FSM state

Description

SOF Dominant bit is transmitted. Bit error would be detected when recessive value was received.
Such a situation is treated as form error, and bit error is ignored.

bus integration,
reintegration Recessive value is transmitted, receiving dominant is not detected as bit error since these

might represent a frame between other units while CTU CAN FD is integrating.
arbitration field Bit error is detected by Protocol control FSM, thus bit error detected by Bus sampling

module is ignored.
Control, data,
stuff count, CRC Bit error detected by Bus sampling module is ignored if unit is receiver. Receiver in these

fields transmitts only recessive bits and reception of dominant bit is not treated as bit error
since unit is receiving data from other transmitter.

CRC delimiter Receiving dominant bit during is interpreted as form error, due to this reason bit error
detected by Bus sampling module is ignored.

ACK Bit error is ignored, as is defined in [1].
ACK delimiter During ACK delimiter, recessive value is transmitted and reception of dominant value is

considered as form error. Due to this reason bit error is ignored.
EOF Reception of dominant bit during EOF is treated as form error due to this bit error is ignored.
Intermission Recessive value is sent to the bus. Receiving dominant bit during first or second bit of

intermission is interpreted as overload frame. Receiving dominant bit during third bit of
intermission is interpreted as SOF of next frame. Due to these reasons, bit error during
intermission is ignored.

Suspend
transmission, idle Recessive value is sent to the bus. Receiving dominant bit is interpreted as SOF of next

frame. Due to this reason bit error during suspend transmission and idle is ignored.
Reintegration
wait When unit turned bus-off, it is de-facto off the bus, It shall not transmitt anything unless it

re-intagrates. Due to this reason bit error is ignored.
Passive error flag Detecting dominant bit during passive error flag is not interpreted as bit error since it is

defined like so in [1].
Error delimiter,
Overload
delimiter

Recessive bit is sent to the bus. Receiving dominant bit is interpreted as form error. Due to
this bit error is ignored.

Sample point Start of next bit

System clock

CAN Bus field End of frame Active Error Flag

Pipeline stage Destuff Process Process + 1 Stuff

Form Error

Error frame request

Protocol control FSM End of Frame Active Error Flag

RX Data

TX Data

a

|

c

b d

Figure 3.15: Error detection example (form error)

40

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Error Detector
Protocol Control

FSMCRC Match = ‘0’, signals mismatch
between received CRC and

calculated CRC or received Stuff Count
and calculated stuff count

Frame
Progress

CRC Delimiter
CRC Match
calculation

ACK Slot
Protocol control FSM
commands TX Shift
register to transmitt

recessive ACK

ACK Delimiter
Protocol control signals CRC Error

(Process pipeline Stage)

Error Detector signals Error Frame request

First bit of Error Flag

Protocol control FSM
starts Error Flag

Error Code Capture
is updated

Protocol control FSM
Transmitts Dominant

or Recessive based
on type of Error Flag

Figure 3.16: CRC check and CRC error signalling

3.14.2 Operation control

File: operation_control.vhd

Operation control implements following functionality:

• Operational state of CTU CAN FD node (transmitter, receiver, idle).

Operation control implements a FSM whose state transition diagram is shown in Figure 3.17. It is controlled by Protocol
control FSM and Fault confinement FSM. Rules for control of Operation control FSM are described in Table 3.27.

Off Idle

Transmitter

Receiver

Set Idle

Set
Receiver

Set
Transmitter

Arbitration Lost,
Set Receiver

Set Idle

Set Idle

Frame in
Progress

No Frame
in Progress

Legend:

Set
Transmitter

SETTINGS[ENA] =’0'
or unit is Bus-off

Figure 3.17: Operation control FSM

41

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.27: Operation control FSM - state transitions

Actual state Next state Description

Off Idle When unit is turned on (SETTINGS[ENA]=’1’), unit integrates to the bus
communication. After integration is finished (11 consecutive recessive bits received),
Protocol control signals set_idle. Unit becomes idle.

Idle Transmitter Unit is idle and in sample point TX arbitrator signals available frame for
transmission, Protocol control FSM locks Validated TXT buffer (reffer to 3.49),
Protocol control signals set_transmitter and unit becomes transmitter of frame
from Validated TXT buffer.

Idle Receiver Unit is idle, there is no available frame for transmission signalled by TX arbitrator.
Dominant bit is sampled, Protocol control FSM signals set_receiver and unit
becomes receiver of next frame.

Transmitter Receiver
due
to
set_receiver

Unit transmitts frame. In last bit of intermission field, unit is still transmitter, unit
detects dominant bit and considers this bit as SOF (reffer to [1]). If there is no
available frame for transmission signalled by TX arbitrator, Protocol control FSM
signals set_receiver and unit becomes receiver of following frame.
Unit is error passive and it transmitts a frame. It enters suspend transmission. If
during suspend transmission, dominant bit is detected, Protocol control FSM issues
set_receiver and unit becomes receiver of next frame.

Transmitter Receiver
due to
arbitra-
tion_lost

If during arbitration field recessive bit is sent on the bus, but dominant bit is
monitored by Protocol control FSM, arbitration_lost is signalled and unit becomes
receiver.

Transmitter Idle Unit transmitts a frame. In last bit of intermission, recessive bit is detected (no other
unit is attempting to transmitt frame) and there is no available frame for
transmission signalled by TX arbitrator. Protocol control FSM issues set_idle
command and unit becomes idle.

Receiver Transmitter Unit receives a frame. In last bit of intermission, available frame for transmission is
signalled by TX arbitrator. Protocol control FSM signals set_transmitter and unit
becomes transmitter of frame from Validated TXT buffer.

Receiver Idle Unit receives a frame. In last bit of intermission, there is no available frame for
transmission signalled by TX arbitrator, recessive bit is monitored (no other unit is
attempting to transmitt frame), then Protocol control FSM issues set_idle
command and unit becomes idle.

Idle, Trans-
mitter,
Receiver

Off Fault confinement FSM signals that unit is bus-off or unit is disabled
(SETTINGS[ENA] = ’0’). In next sample point, unit becomes “Off”.

42

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.14.3 Fault confinement

File: fault_confinement.vhd

Fault confinement module implements following functionality:

• Transmitt error counter (TEC)/ receive error counters (REC) according to [1].

• Rules for manipulation of TEC and REC.

• Fault confinement state of node (error active, error passive, bus-off).

• Set of special error counters to distuinguish between errors in nominal bit rate and data bit rate.

Fault confinement block diagram is shown in Figure 3.18.

fault_confinement

fault_confinement_fsm

fault_confinement_rules

err_counters

Is Error Active

Is Error Passive

Is Bus-off

Fault conf.
State changed

Error Warning
Limit Reached

Fault
Confinement

Interface

Increment by 1

Increment by 8

Decrement by 1

Reset counters

EWL
ERP

REC

TEC

Nominal
Error counter

Data
Error counter

Test access

Figure 3.18: Fault confinement block diagram

TEC and REC counters are controlled by Protocol control FSM via interface standardized in 12.1.3.3 of [1]. Detection
of special conditions stated in 12.1.4.2 of [1] is realized in Fault confinement rules module. Error counters module
implements counters as described in Table 3.28. Counters can be modified from Memory registers via CTR_PRES
register when CTU CAN FD is in Test mode (MODE[TSTM] = ’1’). Fault confinement state as defined in 12.1.4.1 of [1]
is implemented by Fault confinement FSM. State transition diagram of Fault confinement FSM is shown in Figure 3.19.
Threshold for Error warning limit detection (EWL) and transition to error passive (ERP) can be configured from Memory
registers when device is in Test mode (MODE[TSTM] = ’1’). Transition from bus-off to error active is performed after

43

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

reintegration (set_err_active is signalled by Protocol control FSM). Reffer to 3.14.1 for description of Reintegration
counter operation.

Error Active

TEC >= ERP
or

REC >= ERP

Error
Passive

Bus-off

TEC < ERP
and

REC < ERP

TEC > 255

Set Error
Active

Figure 3.19: Fault confinement FSM

Table 3.28: Error counters

Counter
Name CAN FD

standard
name

Description

Receive
error
counter

REC Incremented, decremented as described below.

Transmitt
error
counter

TEC Incremented, decremented as described below.

Nominal
error
counter

- Incremented by 1 for each error detected during nominal bit rate. Does not influence
fault confinement state of CTU CAN FD.

Data error
counter - Incremented by 1 for each error detected during data bit rate. Does not influence

fault confinement state of CTU CAN FD.

Fault confinement rules

The error counters shall be modified according to the following rules (more than one rule may apply during a given frame
transfer):

a) When a receiver detects an error, the receive error counter shall be incremented by 1, except when the detected error
was a bit error during the sending of an active error flag or an overload flag.

b) When a receiver detects a dominant bit as a first bit after sending an error flag, the receive error counter shall be
incremented by 8.

c) When a transmitter sends an error flag, the transmit error counter shall be incremented by 8.

Exception 1: If the transmitter is error-passive and detects an ACK error because of not detecting a dominant
ACK and does not detect a dominant bit while sending its passive error flag.

44

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Exception 2: If the transmitter sends an error flag because a stuff error occurred during arbitration, whereby the
stuff bit should have been recessive, and has been sent recessive but is monitored to be dominant. In exception
1 and in exception 2, the transmit error counter remains unchanged.

d) If a transmitter detects a bit error while sending an active error flag or an overload flag, the transmit error counter
shall be incremented by 8.

e) If a receiver detects a bit error while sending an active error flag or an overload flag, the receive error counter shall
be incremented by 8.

f) Any node shall tolerate up to 7 consecutive dominant bits after sending an active error flag, passive error flag, or
overload flag. After detecting 14 consecutive dominant bits (in case of an active error flag or an overload flag) or
after detecting 8 consecutive dominant bits following a passive error flag, and after each sequence of additional 8
consecutive dominant bits, every transmitter shall increment its transmit error counter by 8 and every receiver shall
increment its receive counter by 8.

g) After the successful transmission of a frame (getting ACK and no error has been detected until EOF is finished), the
transmit error counter shall be decremented by 1 unless it was already 0.

h) After the successful reception of a frame (reception without error up to the ACK slot and the successful sending of
the ACK bit), the receive error counter shall be decremented by 1, if it was between 1 and 127. If the receive error
counter was 0, it shall stay at 0, and if it was greater than 127, then it shall be set to a value between 119 and
127.

3.14.4 Bit stuffing

File: bit_stuffing.vhd

Bit stuffing module implements following functionality:

• Insertion of stuff bits to data transmitted by Protocol control (regular and fixed stuff bits).

• Halting CAN core for one bit time when stuff bit is inserted.

• Counter number of stuff bits modulo 8 for transmission of stuff count field.

• Insertion of stuff bit in the beginning of stuff count field or CRC field of CAN FD Frame.

Bit stuffing module processes transmitted data by Protocol control in Stuff pipeline stage. Bit stuffing module operates
in two modes as described in 3.29. When Bit stuffing is enabled, it inserts bit of opposite polarity to transmitted bit
stream based on Bit stuffing mode. Data are processed by Bit stuffing module with one clock cycle delay (output is
registered). When Bit stuffing module is disabled, it propagates data from input to output without inserting stuff bits
(but still with one clock cycle delay). Input data are processed in Stuff pipeline stage regardless of the fact if Bit stuffing
module is enabled or disabled (Input is not combinatorially bypassed when Bit stuffing module is disabled). Bit stuffing
module is enabled only when unit is transmitter of CAN Frame. When unit is receiver, Bit stuffing module is disabled
and only propagates recessive bit values from input to output. Bit stuffing module counts number of inserted stuff bits in
Regular Bit stuffing mode in counter of stuff bits (this counter is then used in stuff count frame field). A basic sequence
of Bit stuffing module operation is described in Table 3.30.

45

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

When bus is idle and transmission of frame starts, SOF bit is the first bit which is processed by Bit stuffing module.
If unit samples dominant bit during third bit of intermission, bus idle or suspend transmission, this bit is considered as
SOF bit (see 10.4.2.2 of [1]). Such a bit is counted as first dominant bit by Bit stuffing module. Bit stuffing module is
disabled when unit reaches CRC delimiter frame field. Bit stuffing module is not disabled in last bit of CRC sequence
so that stuff bit can be inserted behind the last bit of CRC sequence. When unit loses arbitration (turns receiver), Bit
stuffing module is disabled. An example of Bit stuffing module operation during whole frame is shown in Figure 3.20. If
an error is detected (error frame is requested by Error detector), Bit stuffing module is disabled. Bit stuffing module is
enabled only during fields which shall be coded by bit stuffing as described in [1].

Table 3.29: Bit stuffing modes

Bit stuffing
mode

Stuff rule
length Description

Regular 5 When 5 consecutive bits of equal value are processed, bit of opposite value is
inserted. Inserted stuff bit counts as first bit of next sequence of 5 equal consecutive
bits (bit stuffing is recursive).

Fixed 4 When 4 bits are processed (regardless of their value), a bit of opposite value than
last bit of these 4 bits is inserted on output of Bit stuffing module.

Table 3.30: Bit stuffing module operation

Step Action
1 Bit stuffing module is disabled, there is no transmission / reception in progress by CTU CAN FD. Counter

of equal consecutive bits is 1. Bit stuffing module only propagates recessive value to output in Stuff
pipeline stage.

2 Transmission starts (unit becomes transmitter), Bit stuffing module is enabled. Length of Stuff rule is
configured to 5 by Protocol control FSM.

3 Bit stuffing module processes bits from Protocol control in Stuff pipeline stage. Counter of equal
consecutive bits is incremented by 1 for each processed bit of equal polarity (with respect to previous bit).
When bit of opposite polarity is processed, counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stuff rule. Instead of propagating processed bit to
output, Bit stuffing inserts bit of opposite polarity on output. Bit stuffing module halts to Protocol
control. Protocol control remains halted for one bit. Counter of stuff bits is incremented by 1.

5 After one bit time for which Protocol control was halted, it continues in transmission. Bit stuffing module
continues in processing data transmitted by Protocol control. Counter of equal consecutive bits is
incremented after insertion of stuff bit to account for recursive behaviour of bit stuffing.

Applies only for CAN FD frames
6 CAN FD Frame advances to last bit of frame field preceding stuff count frame field. Bit stuffing mode is

changed to Fixed. Length of Bit stuffing rule is configured to 4.
7 Stuff bit is inserted by Bit stuffing module in the first bit which is processed in Fixed Bit stuffing mode

(First bit of stuff count frame field).
8 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed

bit value. Stuff bit is inserted after each 4 processed bits.

46

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Protocol Control
FSM

Bit Stuffing

TX Frame is signalled by TX Arbitrator,
Protocol control FSM enables Bit Stuffing

Frame
Progress

Bus Idle

SOF

Bit Stuffing is enabled

First bit processed by Bit Stuffing

Next bits during CAN frame
Bits processed by Bit Stuffing.

Counter of equal consecutive bits
reaches 5, Stuff Bit is inserted,
Stuff Counter is incremented

“Data Halt” is signalled to Protocol controlProtocol Control remains
halted for one Bit time. TX
Shift register is not shifted.

Protocol control continues transmitting
after one bit time

Bit Stuffing processes next bits

Repeated for each
sequence of 5

consecutive bits of
equal polarity

End of Frame field
before Stuff Count

Protocol control FSM changes
Bit Stuffing mode to Fixed Stuffing Bit Stuffing mode is Fixed Stuffing

“Data Halt” is signalled to Protocol control due
to first processed bit by Fixed StuffingFirst bit of Stuff Count

Protocol control continues transmitting
after one bit time

Stuff bit is inserted after each 4 bits
“Data Halt” is signalled to Protocol control

CRC Delimiter Protocol control disables Bit Stuffing Bit Stuffing is disabled, rest of the frame is
transmitted without insertion of Stuff Bits

Figure 3.20: Bit stuffing detailed operation

3.14.5 Bit destuffing

File: bit_destuffing.vhd

Bit destuffing module implements following functionality:

• Discard of stuff bits from received data on CAN bus (regular and fixed stuff bits).

• Halting CAN core for one bit time when stuff bit is discarded.

• Holds counter with number of de-stuffed bits modulo 8 for comparison with received stuff count frame field.

• Discarding first fixed stuff bit of CAN FD Frame.

• Detection of stuff error.

Bit destuffing module processes received data on CAN bus as provided by multiplexor in Figure 3.6 in Destuff pipeline
stage. Bit destuffing module operates in two modes as described in Table 3.31. Bit destuffing module discards stuff bits
according to current Bit destuffing mode. Discarded stuff bit is signalled to Protocol control and it is ignored by Protocol
control (not shifted to RX shift register, does not affect Protocol control FSM). Input data are processed with one clock
cycle delay (output is registered). When Bit destuffing module is disabled, it only propagates input data to output in
Destuff pipeline stage without discarding any bit or detecting stuff error. Bit destuffing module is enabled when unit is
transmitter or receiver since transmitter also receives bits transmitted by itself. Bit destuffing module contains counter
of discarded stuff bits in Regular mode. This counter is compared with received stuff count field as part of CRC check
in CAN FD frames. A basic sequence of operation is shown in Figure 3.32.

47

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

When bus is idle, unit is in suspend transmission or third bit of intermission, Bit destuffing module processes dominant
bit (which is subsequently evaluated as SOF by Protocol control FSM), then Bit destuffing module considers this bit as
first bit in sequence of equal consecutive bits. Bit destuffing module is disabled when unit reaches CRC delimiter frame
field. Bit destuffing module is not disabled in last bit of CRC sequence so that stuff bit can be discarded behind the last
bit of CRC sequence. When transmission of error frame is requested, Bit destuffing module is disabled. Bit destuffing
module is enabled only during fields which shall be coded by bit stuffing as described in [1].

Table 3.31: Bit destuffing modes

Bit
destuffing
Mode

Destuff rule
length Description

Regular 5 When 5 consecutive bits of equal polarity are processed, next bit is discarded. If
value of discarded bit is equal to previous bit, stuff error is detected.

Fixed 4 When 4 bits are processed next bit is discarded, next bit is discarded regardless of
values of previous processed bits. If value of discarded bit is equal to previous bit,
stuff error is detected.

Table 3.32: Bit destuffing module operation

Step Action
1 Bit destuffing module is disabled, there is no transmission / reception in progress by CTU CAN FD.

Counter of equal consecutive bits is 1. Bit destuffing module only propagates recessive value to output in
Destuff pipeline stage.

2 Transmission or reception of frame starts (unit becomes receiver), Bit destuffing module is enabled.
Destuff rule length is configured to 5 by Protocol control FSM.

3 Bit destuffing module processes bits in Destuff pipeline stage. Counter of equal consecutive bits is
incremented by 1 for each processed bit of equal polarity (with respect to previous bit). When bit of
opposite polarity is processed, Counter of equal consecutive bits is set to 1.

4 Counter of equal consecutive bits reaches length of Stuff rule. Following bit is discarded (not processed)
and signalled to Protocol control FSM as “Destuffed”. Protocol control ignores such a bit and its
processing of received data remains halted for one bit time. Number of discarded stuff bits (counter of
discarded stuff bits) is incremented by 1.

5 After one bit time for which Protocol control was halted, Bit stuffing module processes next bit. This bit
is also processed by Protocol control. Counter of equal consecutive bits is incremented after discarding
stuff bit to account for “recursive” behaviour of bit destuffing.

Applies only for CAN FD frames
8 CAN FD Frame advances to the end of frame field preceding stuff count frame field. Bit destuffing mode

is changed to Fixed. Destuff rule length is configured to 4.
9 Stuff bit is discarded by Bit destuffing module in the first bit which is processed in Fixed Bit Stuffing

mode (first bit of stuff count frame field).
10 Counter of equal consecutive bits is incremented with each processed bit regardless of previous processed

bit value. Stuff bit is discarded after each 4 processed bits.

48

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.14.6 CAN CRC

File: can_crc.vhd

CAN CRC implements following functionality:

• Calculate CRC sequences according to [1] (for ISO CAN FD) and according to [6] (for non-ISO CAN FD).

• Choose appropriate input and trigger for calculation of CRC sequence.

Block diagram of CAN CRC is shown in Figure 3.21.

can_crc

crc_calc (CRC 15)

crc_calc (CRC 17)

crc_calc (CRC 21)

RX Data
(No Bit Stuffing)

TX Trigger
(No Bit Stuffing)

RX Trigger
(No Bit Stuffing)

TX Data
(With Bit Stuffing)

RX Data
(With Bit Stuffing)

TX Trigger
(With Bit Stuffing)

RX Trigger
(With Bit Stuffing)

Is transmitter
TX Data

(No Bit Stuffing)
Data input

Trigger

Data input

Trigger

CRC 15

CRC 17

CRC 21

CRC Enable

CRC Speculative
Enable

Figure 3.21: CAN CRC block diagram

CAN CRC contains 3 CRC calculation modules (CRC_15, CRC_17, CRC_21). CRC_15 is calculated from data with-
out stuff bits. CRC_17 and CRC_21 are calculated from data with stuff bits inserted. CRC register is preloaded to
CRC_INIT_VECTOR upon enabling of CRC calculation (before first bit is processed). Each bit of CAN frame, next step
of CRC calculation is executed when according CRC calculation module is enabled. A pseudo-code for CRC calculation
is shown in [1].
Data input which is used as input of CRC calculation is different for transmitter/receiver and part of CAN frame when
CRC calculation step is executed. During arbitration field, or when speculative enable is used (during bus idle, intermission
or suspend transmission), CRC is calculated from received data as there can be multiple units transmitting on the bus
at once and correct value (when bus has settled in sample point) must be used for calculation. After arbitration field
(when only one unit on the bus remained transmitter), transmitter calculates CRC from transmitted data and receivers
calculate CRC from received data. Calculation step from transmitted data is shown in Figure 3.22 and from received
data is shown in 3.23.
After arbitration field, source of data for CRC calculation changes from transmitted to received data. Pipeline stage during
which next step of CRC calculation is executed differs based on source of input data (if received data are used, input
data are not valid before sample point) as described in Table 3.33. When CRC_17/CRC_21 execute CRC calculation
step from stuffed/destuffed bit, CRC_15 remains unchagned (according trigger signal is gated). CRC calculation step

49

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

can be enabled by means of two enable signals: Regular enable and Speculative enable. Meaning of these two signals is
explained in Table 3.34.

Start of bit N + 1 Start of bit N + 2 (Stuff bit)

System clock

CAN Bus bit Bit N Bit N + 1 Bit N + 1 Bit N + 2

Pipeline stage Stuff Stuff + 1 Stuff Stuff + 1

Data Halt

CRC15 Bit N Bit N + 1

CRC15 trigger

CRC17 / CRC21 Bit N Bit N + 1 Bit N +2

CRC17 / CRC21 trigger

a

|

c

b d

Figure 3.22: CRC calculation - TX Data stream

Sample point of Bit N Sample point of Bit N + 1 (Stuff Bit)

System clock

CAN Bus bit Bit N Bit N + 1

Pipeline stage Destuff Process Destuff Process

Destuffed bit

CRC15 Bit N - 1 Bit N

CRC15 trigger

CRC17 / CRC21 Bit N - 1 Bit N Bit N + 1

CRC17 / CRC21 trigger

a

|

c

b d

Figure 3.23: CRC calculation - RX Data stream

Table 3.33: CAN CRC calculation

CRC
module Data

stream
Data input for CRC calculation Pipeline stage when calculation

step is executed

CRC_15 TX Transmitted data on output of Protocol control. Stuff
RX Received data on input of Protocol control. Process

CRC_17 TX Transmitted data on output of Bit stuffing
module.

Stuff + 1 clock cycle

RX Received data on input of Bit destuffing module. Process

CRC_21 TX Transmitted data on output of Bit stuffing
module.

Stuff + 1 clock cycle

RX Received data on input of Bit destuffing module. Process

50

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.34: CAN CRC enable signals

CAN CRC Enable
signal

Description

Regular enable When CRC module is enabled by regular enable signal, it executes next step of calculation in
according pipeline stage regardless of input data value to be processed. This enable signal is
used during CAN frame fields from SOF until end of data field.

Speculative
enable

When CRC module is enabled by speculative enable signal, it executes next step of calculation
in according pipeline stage only when input data value to be processed is dominant (logic 0)
and recessive value is ignored. Speculative enable is used in suspend transmission, last bit of
intermission and bus idle when dominant value is sampled and this value is interpreted as SOF
by Protocol control (as this bit needs to be already taken into account for CRC calculation).

3.14.7 Trigger multiplexor

File: trigger_mux.vhd

Trigger multiplexor implements following functionality:

• Gating of trigger signals (clock enables for pipeline stages)

Trigger multiplexor creates trigger signals for other blocks within CAN core from trigger signals generated by Prescaler
as described in Table 3.35. See 3.20.7 on how are trigger signals generated by Prescaler.

51

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.35: Trigger signals

Trigger
Name

Pipeline
stage Description

Protocol
control TX
Trigger

Stuff Used to shift TX shift register in Protocol control. Gated when there is stuff bit
inserted, this corresponds to halting Protocol control for 1 bit time as described in
Table 3.30

Protocol
control RX
Trigger

Process Used to shift RX shift register in Protocol control, update of Protocol control FSM
state, manipulation of Control counter and Retransmitt Counter. Gated when stuff
bit is discarded, this corresponds to halting Protocol control for 1 bit time as
described in Table 3.32.

Bit Stuffing
Trigger Stuff Used for processing of transmitted data by Bit stuffing module.

Bit
Destuffing
Trigger

Destuff Used for processing of received data by Bit destuffing module.

CRC TX
WBS
Trigger

Stuff + 1
clock cycle Used to enable CRC calculation step for CRC_17 / CRC_21 when CRC calculation

step is executed from transmitted data.
CRC TX
NBS
Trigger

Stuff Used to enable CRC calculation step for CRC_15 when CRC calculation step is
executed from transmitted data.

CRC RX
WBS
Trigger

Process Used to enable CRC calculation step for CRC_17 / CRC_21 when CRC calculation
step is executed from received data.

CRC RX
NBS
Trigger

Process Used to enable CRC calculation step for CRC_15 when CRC calculation step is
executed from received data.

3.14.8 Bus traffic counters

File: bus_traffic_counters.vhd

Bus traffic counters contains two 32-bit counters (TX frame counter and RX frame counter). TX frame counter counts
succesfully transmitted frames (without error frame or arbitration lost) and is incremented by 1 for each such transmitted
frame. RX frame counter counts succesfully received frames (without error frame) and is incremented by 1 for each
such a frame. If unit is transmitter in Loopback mode (it also receives frame transmitted by itself), both counters are
incremented upon succesfull transmission/reception. In such case, TX frame counter is incremented when transmitted
frame is considered valid and RX frame counter is incremented when received is considered valid as defined in 10.7 of
[1]).
Both counters can be erased by SW via COMMAND[TXFRCRST] and COMMAND[RXFRCRST] register. Value of
traffic counters can be read out from TX_FR_CTR and RX_FR_CTR registers. Bus traffic counters are instantiated
only when sup_traffic_counters=true. When Bus traffic counters are not instantiated, access to TX_COUNTER and
RX_COUNTER registers are reserved and writes to COMMAND[TXFRCRST] and COMMAND[RXFRCRST] have no
effect.

52

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.15 RX buffer

File: rx_buffer.vhd

RX buffer implements following functionality:

• Storing frame to FIFO memory as CAN frame progresses.

• Count number of stored frames in FIFO.

• Provide read interface for Memory registers.

• Abort storing of CAN frame in case of an error frame request or overrun.

Block diagram of RX Buffer is shown in Figure 3.24.

rx_buffer

rx_buffer_ram

rx_buffer_fsm Frame Commit
Logic

Store Metadata
(Filtered)

Store Data
(Filtered)

Reception Abort
(Filtered)

 Reception Valid
(Filtered)

Data Overrun
And Free Memory

Handling Logic

Timestamp stored

Data
Overrun

Reset Overrun
Flag

Write
Intent

Write OK

Tim
e

stam
p

w

rite p
o

in
te

r
co

n
tro

l

Read
Increment

E
lap

se
d

Commit

Abort

Read Frame
Counter Logic

Data Multiplexing
and Timestamp
Capturing Logic

RX Metadata

RX Data Word

Timestamp

Memory
Word

Write OK

rx_buffer_pointers

R
a

w
 W

rite
 P

o
in

te
r

R
a

w
 R

e
ad

 P
o

in
te

r

E
xtra

 TS P
o

in
te

r

Write Pointer

Read Pointer

RX Buffer
Output

Sof Pulse

RX Identifier

Empty

Full

Figure 3.24: RX Buffer block diagram

RX buffer contains FIFO memory (details of actual RAM memory are described in 3.7). Size of RX buffer memory is
configurable by rx_buffer_size generic between 32 and 4096 32-bit memory words. Lower limit on size of RX buffer
RAM is imposed to be able to store at least 1 CAN FD frame with 64 byte data payload. Format of CAN FD frame within
the memory is described in 3.10 and visualized in Figure 3.25. Size of CAN frame within RX buffer memory spans from
4 to 20 32-bit memory words. Remote frames and frames with no data field span 4 memory words (Metadata, Identifier,
Timestamp upper and Timestamp lower). Each next 4 bytes of data field span one memory word. Longest frame with
64 data bytes spans 20 memory words (Metadata, Identifier, Timestamp upper, Timestamp lower and 16 data words).
RX frame is stored to FIFO by means of Storing protocol which is described in 3.15.1. RX Frame is read from FIFO by
means of Reading protocol which is described in 3.15.4. RX buffer contains pointers to FIFO which are described in detail
in Table 3.36. RX buffer can by flushed by issuing Release receive buffer command (writing logic 1 to COMMAND[RRB]).
In such case, all pointers are reset to zero as well as counter of stored frames (see 3.15.4). If Release receive buffer

53

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.36: RX Buffer pointers

Pointer Incremented by 1 Pre-loaded Pre-load value
Raw write
pointer

When a word is written to RX
buffer RAM (Metadata, Identifier,
Timestamp or Data word)

When Reception abort command is
issued or, Reception valid command is
issued and Overflow occured before in
the frame.

Commited write
pointer

Commited
write
pointer

- When frame is commited. Raw write pointer

Timestamp
write
pointer

During storing of Timestamp lower
word.

When Raw write pointer points to
Lower timestamp word of frame which
is actually being stored.

Raw write pointer

Read
pointer

When a word is read from RX
buffer.

- -

command is issued by SW during storing of CAN frame, overrun flag is set, and upon the end of actual frame this frame
is discarded, and Raw write pointer is reset to value of previous Comited write pointer.

FRAME_FORMAT_W

IDENTIFIER_W

TIMESTAMP_L_W

TIMESTAMP_U_W

DATA _1_4_W

DATA_5_8_W

FRAME_FORMAT_W

TIMESTAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

FRAME_FORMAT_W

TIMETAMP_L_W

TIMESTAMP_U_W

IDENTIFIER_W

DATA _1_4_W

...

DATA_61_64_W

... Write pointer

Read pointer

CAN FD Frame
(64 data bytes)

RTR frame

CAN 2.0 / FD frame
(8 data bytes)

Address 0

Address rx_buff_size - 1

...

Figure 3.25: RX Buffer memory format

3.15.1 Storing protocol

Protocol control FSM forms “Master” side of Storing protocol and it issues commands which are described in Table 3.37.
Commands from Protocol control FSM are filtered by Frame filters before being connected to RX buffer. Commands
pass CAN fame filters when RX frame matches CAN frame filters as described in 3.16. If received frame does not
match CAN frame filters, commands are gated and does not reach RX buffer within current CAN frame. RX buffer FSM
forms “Slave” side of this protocol, it receives commands and reacts upon them. State transition diagram of RX buffer
FSM is shown in Figure 3.28. Commands are issued by Protocol control FSM continously as reception of CAN frame
progresses. Commands are issued by Protocol control FSM when unit is receiver of a frame, or when Loopback mode

54

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

(SETTINGS[ILBP] = ’1’) is enabled. When unit is transmitter and Loopback mode is disabled, commands are not issued
to RX buffer (CAN frame is not being stored). An example of Storing protocol is shown in Figures 3.15.1 and Figure
3.27. Storing protocol is described in Table 3.38.
During storing of CAN frame, this frame can’t be read out by SW via Memory registers. When frame is succesfully
received without error frame or overrun (last bit of EOF field), it is commited to RX buffer and it becomes available for
SW.

 Metadata + Identifier stored Yellow Data word stored Oragne Data word stored Timestamp stored

CAN frame part Idle SOF Arbitration Control Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 CRC End of frame

Store metadata

Store data

Reception valid

a c e g

b d f h

Figure 3.26: RX buffer storing protocol - succesfull reception

 Metadata + Identifier stored Yellow Data word stored Oragne Data word stored Raw Write Pointer reverted

CAN frame part Idle SOF Arbitration Control Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 CRC Error frame

Store metadata

Store data

Reception abort

a c e g

b d f h

Figure 3.27: RX buffer storing protocol - Error frame

 Store Metadata

Store Frame
Format

Store Identifer

Skip Timestamp
Low

Skip Timestamp
High

Store Data

Store Timestamp
High

Store Timestamp
Low

Idle

Reception Abort
or Overrun set

Reception Valid

Reception
Abort

Figure 3.28: RX buffer FSM

55

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.37: RX buffer commands

Command Issued in CAN frame part Action performed Source of stored information to
RX buffer RAM

Store
metadata

At the end of data length
code field.

Store Metadata word,
Identifier word and zeroes to
Timestamp words.

Frame metadata and identifier
from capture registers in RX shift
register in Protocol control.

Store data After multiple of 4 bytes of
data field elapsed and at the
end of data field.

Store Data word (4 bytes). RX shift register in Protocol
control.

Reception
valid

In sample point of last bit of
EOF field.

Timestamp is stored and
afterwards CAN Frame is
commited to memory.

Timestamp capture register.

Reception
abort

When error frame is
transmitted.

Frame storing is aborted, Raw
write pointer is reverted to
last Commited write pointer.

-

Table 3.38: RX buffer storing protocol - detailed description

Step Action
1 Reception of CAN frame starts. If received frame timestamp is configured to be captured at SOF

(RX_SETTINGS[RTSOPT]), it is captured to Timestamp capture register.
2 Identifier is received to RX shift register in Protocol control and stored to dedicated capture register.

Metadata are stored to dedicated capture registers in Protocol control. See 3.14.1.
3 At the end of control field, it is already clear whether unit is transmitter or receiver. It can no longer

happend that a word will be stored to RX buffer and unit will turn receiver due to losing arbitration.
Protocol control FSM issues Store metadata command if unit is receiver or in Looback mode.

4 RX buffer FSM stores Metadata to Frame format word, received CAN identifier to Identifier word and
zeroes to Timestamp words during 4 consecutive clock cycles (during each cycle 1 word is stored). Raw
write pointer is incremented by 1 during each of these cycles. When Raw write pointer points to Lower
Timestamp word, it is captured to Timestamp write pointer. After this step Raw write pointer points to
first Data word.

5 Data field of CAN frame starts. After each 4 bytes are received, Protocol control FSM issues Store data
command. These 4 bytes are stored to RX buffer RAM in single word and Raw write pointer is
incremented.

6 At the end of last bit of data field, Protocol control FSM issues Store data command if the length of data
field is not multiple of bytes. Remaining bytes are stored to RX buffer RAM and Raw write pointer is
incremented.

7 CAN frame progresses to EOF field. In sample point of EOF field, received frame is considered valid
(assuming no error frame). Protocol control FSM issues Reception valid command. If received frame
timestamp shall be taken in EOF, it is captured to Timestamp capture register.

8 Timestamp is stored from Timestamp capture register (by means of Timestamp write pointer), to
Timestamp low and Timestamp high memory words of RX Buffer.

9 If overrun condition did not occur during storing of current frame, frame is commited to memory, Raw
write pointer moves to Commited write pointer and number of frames in RX buffer (Frame counter) is
incremented. If overrun condition or Release receiver buffer command did occur during storing of current
frame, frame is not commited to memory, Raw Write Pointer is reverted to Commited Write Pointer and
number of frames in RX Buffer remains unchanged.

56

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.15.2 Overrun flags

RX Buffer maintains two overrun flags: User overrun flag and Internal overrun flag. Both overrun flags are set when RX
buffer FSM intents to store a word to RX buffer RAM, and RX buffer RAM is full (Overrun condition). Internal overrun
flag is reset at the end of CAN frame. User overrun flag is reset by SW writing COMAND[CDO]=1. When frame is
error-free (no error frame), but overrun condition occured at some point before in the frame (Internal overrun flag is set),
frame is discarded (not commited) and Write pointers are manipulated as if Reception abort command was received.

3.15.3 Received frame timestamp

RX buffer implements Timestamping of received frames. Such a timestamp is created by sampling timestamp input of
CTU CAN FD in sample point of SOF or EOF bits (configured by RX_SETTINGS[RTSOP]). In sample point of these
bits, timestamp is captured to capture register and stored to RX bufer RAM from capture register at the end of CAN
frame . As position of Timestamp memory words within RX buffer RAM is lower than Data words, when timestamp is
about to be stored (in sample point of EOF), Raw write pointer is pointing one memory word behind last word of CAN
frame. Due to this reason, Raw write pointer can’t be used to store received frame timestamp and dedicated Timestamp
write pointer is used. This pointer is loaded by RX buffer FSM to point to first Timestamp word in RX Buffer RAM.

3.15.4 Reading protocol

CAN frame from RX buffer is read out by SW word by word by reading RX_DATA register. There are two modes
(distuiguished by MODE[RXBAM] bit) in which RX buffer can be read:

• Automated mode (default) - SW must read via 32 bit accesses. When RX_DATA register is read, RX buffer read
pointer automatically moves to next word.

• Manual mode - SW can read via 8/16/32 bit accesses. When RX_DATA register is read, RX buffer read pointer is
NOT moved automatically to next word. To move RX buffer to next word, use must issue COMMAND[RXRPMV]).
This mode can be used in systems which are incapable of executing “atomic” 32 bit accesses, and require reading
by 8 or 16 bit accesses.

Behavior of RX buffer during reads is described in 3.39. Read pointer is incremented after each word is read, either
manually or automatically (an exception to this rule is when FIFO is empty). RX buffer supports single reads (Read
indication asserted for one clock cycle) and also continous burst read (Read indication asserted for several consecutive
clock cycles). Since RX buffer RAM has one clock cycle delay on data output, RAM read address is speculatively
multiplexed between Read pointer and Read pointer + 1 as shown in Figure 3.29. Due to this speculation RX Buffer read
pre-feteches data from next memory word instead of memory word given by Read pointer. This speculation is executed
to support burst read.

57

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.39: RX buffer - read protocol

Step Action
1 Read pointer points to Frame Format word of most recently stored frame in RX buffer. Output of RX

buffer RAM contain Frame Format word.
2 SW reads from RX_DATA register (Frame Format word). Auxiliarly counter is loaded to value of

RWCNT. Read pointer is incremented by 1.
3 SW now knows value of RWCNT (number of remaining words in currently read frame). SW reads from

RX_DATA register RWCNT times. Read Pointer is incremented by 1 and auxiliarly counter is
decremented by 1 after each of these reads.

4 During last read (when auxiliarly counter transits from 1 to 0), Frame counter is decremented by 1.

* Frame format (next frame)

System clock

Memory Bus - Read

Memory Bus - Address RX_DATA RX_DATA

Memory Bus - Read data Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3

RX Buffer read

RX Buffer RAM read data Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format (next frame)

RX Buffer RAM address Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format* Identifier (next frame)

Read pointer Frame Format Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format (next frame)

Speculative read pointer Identifier Times. Low Times. High Data word 1 Data word 2 Data word 3 Frame Format* Identifier (next frame)

Use speculative pointer

RAM address to RAM read data

RAM read data to Memory bus read data

d h

b c f g

a e

Figure 3.29: RX Buffer - Read pointer speculation

RX buffer contains Frame counter (readable by SW via RX_STATUS[RXFRC]). Frame counter holds amount of CAN
frames actually stored in RX buffer. Frame counter is incremented by 1 when a frame is commited to RX buffer. Since
RX buffer RAM is read word by word, RX buffer counts each read word from Memory registers and decrements Frame
counter only when whole frame was read. If new frame is committed at the same time as last word of another frame is
read, Frame counter remains unchanged. Manipulation with Frame counter is described in Table 3.40.

Table 3.40: Frame counter handling

Step Action
1 Frame counter is 0. CAN frame is being received and stored to RX buffer RAM.
2 Frame ends and it is commited to RX Buffer, Frame Counter is incremented to 1.
3 Read Pointer points to the first word of CAN frame (Frame format word). Memory registers issue a read

from RX Buffer. RX Buffer RAM output contains Frame Format word. RX Buffer loads value of RWCNT
(Read word count) to an auxiliarly counter. Frame counter remains 1 and Read Pointer increments and
points to Identifier word.

4 Memory registers issue RWCNT - 1 number of reads from RX Buffer and Read pointer increments by 1
on each read. Auxiliarly register decrements by 1 each read.

5 Memory registers issue a read from RX Buffer (reading last word of CAN frame). Auxiliarly register
indicates that last word of frame is read and Frame counter is decremented by 1.

58

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.15.5 RX Buffer RAM

If target_technology = 0 (ASIC), clock for RX buffer RAM are gated if RX buffer RAM is not written nor read.

59

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.16 Frame Filters

File: frame_filters.vhd

Frame filters implement following functionality:

• Filter RX frames before storing to RX buffer based on CAN Identifier.

• Gate RX buffer commands when identifier does not pass Frame Filters.

Frame filters implement two types of filters: Bit filter and Range filter. There are three instances of Bit filter (A, B, C)
and one instance of Range filter. Each instance is selectively synthesizable by sup_filt_A/B/C or sup_range generics.
If filter is not synthesized, it is not taken into account during frame filtering. When no Frame filter is synthesized, all RX
frames are stored to RX buffer and no frame is filtered out.
CAN frame passes Frame filters if received identifier passes at least one filter (logical OR). Filters are considered only
when Acceptance filter mode is enabled (MODE[AFM] = ’1’). When Acceptance filter mode is disabled, no received
frames are filtered out.
Each filter can be configured to accept only given combination of Frame type and Identifier type via FILTER_CONTROL
register. If received Frame type and Identifier type does not match accepted Frame type and Identifier type, it does not
pass filter even if its identifier is matching. For description of filter operation reffer to 3.41 and 3.42. Note that logic
equations within these tables follow C-like syntax with “&” meaning “logical AND” and “&&” meaning “boolean AND”.
(A,B) means concatenation of vectors A and B where A is MSB. Note that accepted combinations of Accepted Frame
types / Identifier are one-hot coded in FILTER_CONTROL register and therefore any combination of these settings can
be used.

Table 3.41: Bit filter operation

Accepted Frame
types / Identifier
types

Received
Identifier
type

Condition for frame to pass
RX_BASE = Received base identifier, RX_EXT = Received identifier
extension, FILTER_X_MASK (A,B,C) = Filter mask, FILTER_X_VALUE
(A,B,C) = Filter value, FR_TYPE = Received frame type (corresponds to
FDF bit), ID_TYPE = Received identifier type (corresponds to IDE bit)

CAN
2.0
/
Base

Base [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &
FILTER_MASK(28:18))] && (FR_TYPE == CAN 2.0) && (ID_TYPE ==
Base)

Extended not accepted
CAN
FD
/
Base

Base [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &
FILTER_MASK(28:18))] && (FR_TYPE == CAN FD) && (ID_TYPE ==
Base)

Extended not accepted
CAN
2.0
/
Extended

Base not accepted
Extended [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &

FILTER_MASK(28:18))] && [(RX_EXT & FILTER_MASK(17:0)) ==
(FILTER_BASE(17:0) & FILTER_MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)

CAN
FD
/
Extended

Base not accepted
Extended [(RX_BASE & FILTER_MASK(28:18)) == (FILTER_BASE(28:18) &

FILTER_MASK(28:18))] && [(RX_EXT & FILTER_MASK(17:0)) ==
(FILTER_BASE(17:0) & FILTER_MASK(17:0))] && (FR_TYPE == CAN
FD) && (ID_TYPE == Extended)

60

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.42: Range filter operation

Accepted Frame
types / Identifier
types

Received
Identifier
type

Condition for frame to pass
RX_BASE = Received base identifier, RX_EXT = Received identifier
extension, FILTER_RAN_LOW = Lower filter threshold, FILTER_RAN_HIGH
= Upper filter threshold, FR_TYPE = Received frame type (corresponds to
FDF bit), ID_TYPE = Received identifier type (corresponds to IDE bit)

CAN
2.0
/
Base

Base (RX_BASE >= FILTER_RAN_LOW(28:18)) && (RX_BASE <=
FILTER_RAN_LOW(28:18) && (FR_TYPE == CAN 2.0) && (ID_TYPE
== Base)

Extended not accepted
CAN
FD
/
Base

Base (RX_BASE >= FILTER_RAN_LOW(28:18)) && (RX_BASE <=
FILTER_RAN_LOW(28:18)) && (FR_TYPE == CAN FD) && (ID_TYPE
== Base)

Extended not accepted
CAN
2.0
/
Extended

Base not accepted
Extended ((RX_BASE, RX_EXT) >= FILTER_RAN_LOW(28:0)) && ((RX_BASE,

RX_EXT) <= FILTER_RAN_LOW(28:0)) && (FR_TYPE == CAN 2.0)
&& (ID_TYPE == Extended)

CAN
FD
/
Extended

Base not accepted
Extended ((RX_BASE, RX_EXT) >= FILTER_RAN_LOW(28:0)) && ((RX_BASE,

RX_EXT) <= FILTER_RAN_LOW(28:0)) && (FR_TYPE == CAN FD)
&& (ID_TYPE == Extended)

3.17 TXT buffer

File: txt_buffer.vhd

TXT buffer implements following functionality:

• Stores single CAN frame for transmission in internal RAM memory.

• Manages access from HW and SW to this RAM memory.

• Provide status of frame transmission for SW.

Number of TXT buffers in CTU CAN FD is configurable at synthesis time via txt_buffer_count top level generic. Each
TXT buffer contains 1 RAM memory. Each TXT buffer RAM is accessed by SW via Memory registers as described in
[1]. SW stores CAN frame to TXT buffer. For SW, TXT buffer RAM is write-only. TXT buffer RAM is also accessed
by Protocol control FSM and TX arbitrator. TX arbitrator reads parts of CAN frame as part of TXT buffer valiation.
Protocol control FSM reads data words from TXT buffer RAM as part of their transmission on CAN bus. For Protocol
control and TX arbitrator, TXT buffer is read-only. TXT buffer is managed by FSM which is shown in Figure 3.30.
CAN frame format within TXT buffer is the same as within RX buffer and it is described within 3.10. Each TXT buffer
in CTU CAN FD has its own priority (configured by SW in TX_PRIORITY register). Based on priority, TX arbitratror
selects TXT buffer which will be used for transmission (see 3.18).

61

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Set Abort

Done

Failed

Set Ready

Empty

TX OK

Aborted

TX Failed

Lock
Arb. Lost,

Error

Set Abort

Set Ready

Set Empty

Ready

Arb. Lost, ErrorAbort In
Progress

HW Command

SW Command Buffer is
locked

Buffer is
unlocked

Legend:

Set Abort
and
Lock

Simultaneous
HW/SW Command

Set Abort and
Arb. Lost or Error

TX In
Progress

Parity
Error

Parity Error

Figure 3.30: TXT buffer FSM

3.17.1 TXT buffer commands

Two types of commands can be issued to TXT buffer: SW commands and HW commands. SW commands are issued by
SW access to TX_COMMAND register. HW commands are issued by Protocol control FSM. Both command types are
described in Table 3.43. Since operation of SW and Protocol control FSM are not synchronized, HW and SW commands
can occur simultaneously. Behavior in such cases is described in Table 3.44. If SW command is applied to TXT buffer
FSM in state for which it is not valid, it has no effect. HW command is never applied in TXT buffer FSM state for which
it is not valid (there are design assertions to check that).

Table 3.44: TXT buffer simultaneous HW/SW commands

HW
Com-
mand

SW
Com-
mand

TXT Buffer
state

Result

Lock Set abort Ready TXT buffer becomes “Abort in progress”, Protocol control attempts
to do do single transmission from thix TXT buffer.

Unlock -
done

Set abort TX in Progress TXT buffer is unlocked and becomes “TX OK” since transmission is
successfull.

Unlock -
failed

Set abort TX in Progress TXT buffer is unlocked and becomes “TX failed” since transmission
failed.

Unlock -
arbitra-
tion lost,
error

Set abort TX in Progress TXT buffer is unlocked and becomes “Aborted”. No more
transmissions are attempted from this TXT buffer. In this case SW
command has priority over HW command. Due to this, transmissions
will not go on from thix TXT buffer.

62

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.43: TXT buffer commands

Command
name

Command
type

Valid TXT
buffer States

When is command issued

Set ready SW Empty, TX OK,
Aborted, TX
failed

SW stored CAN frame to TXT buffer RAM and wants to transmit
this frame.

Set empty SW TX OK,
Aborted, TX
failed

SW wants to move TXT buffer to its inital state after reset.

Set abort SW Ready, TX in
progress, Abort
in progress

SW wants to abort transmission of a frame whose transmission has
been previously requested by Set ready command.

Lock HW Ready Protocol control FSM starts transmitting frame from TXT buffer.
Unlock -
done

HW TX in progress,
Abort in
progress

Protocol control FSM successfully transmitted frame from TXT
buffer.

Unlock -
error

HW TX in progress,
Abort in
progress

Error frame occurred, Protocol control stops transmitting from
TXT buffer.

Unlock -
arbitration
lost

HW TX in progress,
Abort in
progress

Arbitration was lost, Protocol control stops transmitting from TXT
buffer.

Unlock
failed

HW TX in Progress,
Abort in
progress

A frame was re-transmitted number of times unsucesfully (either
arbitration was lost or error frame occurred) and Retransmitt
counter reached Retransmitt threshold. Frame transmission will not
be attempted anymore.

3.17.2 TXT buffer RAM

File: txt_buffer_ram.vhd

TXT buffer RAM is written by SW (port A) and read by Protocol Control FSM (port B). With regards to accessibility,
TXT buffer RAM can be in two states: Unlocked and Locked. TXT buffer FSM states corresponding to Locked and
Unlocked state of TXT buffer RAM are demonstrated in Figure 3.30. When TXT buffer is unlocked, it is not acessed
by Protocol control (nor TX arbitrator) as there is no frame transmission/validation from this TXT buffer and SW can
write to TXT buffer via Memory registers. When TXT buffer is Locked, it was either marked as Ready, or validated by
TX arbitrator, or transmission is in progress from this TXT buffer. When TXT buffer is locked, SW can not write to
TXT buffer RAM and such writes have no effect.

3.17.3 TXT buffer - Transmission availability

When TXT buffer FSM is in Ready state, it is “Available” for transmission from TX arbitrators point of view. However,
if TXT buffer receives Set abort command, it become “Unavailable” for transmission in the same clock cycle as Set abort
command is active (txtb_available drops low). In this clock cycle, TXT buffer FSM is still in Ready state and it will
move to Aborted (or Abort in progress) in following clock cycle. This combinatorial path from Set abort command to
output of TXT buffer is necessary to avoid hazards on TXT buffer selection as explained in 3.18.10.

63

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.17.4 TXT buffer - Use cases

Table 3.45: TXT Buffer - sucessfull transmission

Step SW Action HW Action / State
1 SW fills TXT buffer RAM. TXT buffer is in Empty state.
2 SW issues Set ready command. TXT buffer moves to Ready state.
3 TX arbitrator validates TXT buffer for transmission and indicates this

to Protocol control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT buffer moves to TX
inprogress and Protocol control starts transmission from TXT buffer.

4 Frame transmission ends successfully and Protocol control issues
Unlock - done command. TXT buffer moves to TX OK state.

5 SW reads state of TXT buffer
and finds out that transmission
ended succesfully.

Table 3.46: TXT buffer - Abort

Step SW Action HW Action / State
1 SW fills TXT buffer RAM. TXT buffer is in Empty state.
2 SW issues Set ready command. TXT buffer moves to Ready state.
3 TX arbitrator validates TXT buffer for transmission and

signals to Protocol control there is a valid TXT buffer for
transmission. On third bit of Intermission or when bus is
idle, Protocol control issues Lock command, TXT buffer
moves to TX in progress. Protocol control starts
transmission from TXT buffer.

4 During transmission SW issues Set abort
command to TXT buffer.

TXT buffer moves to Abort in progress.

5 If error frame occurs or arbitration is lost, TXT buffer moves
to Aborted state. If frame transmission finished succesfully,
TXT buffer moves to TX OK state.

6 SW reads state of TXT buffer and finds
out whether transmission was aborted or
it ended succesfully.

64

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.47: TXT buffer - transmission failed

Step SW Action HW Action / State
1 SW fills TXT buffer RAM. SW configures

retransmitt limit to 5 and enables
retransmitt limitation.

TXT buffer is in Empty state.

2 SW issues Set ready command. TXT buffer moves to Ready state.
3 TX arbitrator validates TXT buffer for transmission and

indicates available TXT buffer for transmission to Protocol
control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command, TXT buffer moves
to TX in progress and Protocol control starts transmission
from TXT buffer.

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT buffer moves to state Ready. Retransmitt counter is
incremented by 1.

Steps 3-4 repeat until retransmitt counter reaches 5
5 On 5th retransmission (retransmitt counter = 5), error

occurs. Protocol control issues Unlock - failed command.
TXT buffer FSM moves to TX failed state.

6 SW reads state of TXT buffer and finds
out that transmission failed.

Table 3.48: TXT buffer - Simultaneous Set abort and Lock

Step SW Action HW Action / State
1 SW fills TXT buffer RAM. TXT buffer is in Empty state.
2 SW issues Set ready command. TXT buffer moves to Ready state.
3 SW decides to abort transmission of this

frame and issues Set abort command.
TX arbitrator validates TXT buffer for transmission and
indicates available TXT buffer for transmission to Protocol
control. On third bit of intermission or when bus is idle,
Protocol control issues Lock command. By coincidence, Set
abort command (SW) and Lock command (HW) are active
in the same clock cycle. TXT buffer moves to Abort in
progress and Protocol control starts transmission from TXT
buffer.

4 An error frame occurs or arbitration is lost, Protocol control
issues Unlock - error or Unlock - arbitration lost command.
TXT buffer moves to state Aborted.

5 SW reads state of TXT buffer and finds
out that transmission was aborted.

65

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.18 TX arbitrator

File: tx_arbitrator.vhd

TX arbitrator implements following functionality:

• Pick TXT buffer for transmission.

• Load CAN frame metadata and Identifier from TXT buffer and provide them to CAN core for transmission.

• Check parity of Metadata, Identifier and Timestamp words read from TXT Buffer, and signal to TXT Buffer that
it contains corrupted data.

• Execute comparison of timestamp input with transmitted frame timestamp and determine moment of CAN frame
transmission.

• Signal to CAN core that CAN frame was validated and can be locked for transmission.

• Hold index of TXT buffer from which CAN core is actually transmitting.

• Detect change of TXT buffer between two consecutive transmissions.

TX arbitrator block diagram is shown in Figure 3.31.

66

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

bus_sampling

priority_decoder
TXT Buffer priorities

TXT Buffers available
for transmission

TXT Buffer
available

Selected Buffer
index

tx_arbitrator_fsm

TX Frame ready
logic

Frame
selected

TX Frame valid

TXT Buffer 1
RAM

Port B Data

...
TXT Buffer 4

RAM
Port B Data

TXT Buffer
Read Data

Transmitting
and Last

Buffer Index

Index selector

Store
Index

Store Timestamp

Buffer Metadata

Timestamp
Capture
registers

Timestamp
comparison

Timestamp
valid

Timestamp

TX Frame Metadata

TX Frame Data word

TXT Buffer address

Selection
Pointer

TXT Buffers
Port B

Address

Pointer control

TXT Buffer
changed

Legend:

Memory
registers

Out of CTU
CAN FD

Protocol
Control

TXT
Buffers

Metadata
capture
registers

Metadata
double-buffer

registers

Store
Metadata

Figure 3.31: TX arbitrator block diagram

3.18.1 TXT buffer validation process

With regards to processing by TX arbitrator, TXT buffer can be in one of states described in Table 3.49. TXT buffer
validation process starts when Priority decoder picks highest priority Available TXT buffer (such TXT Buffer becomes
“Selected”) for transmission (see 3.18.2). Validation process is described in 3.50. An FSM controlling the selection is
shown in 3.32. Note each state of TXT buffer FSM which is part of TXT buffer validation lasts for two clock cycles due
to wait state. Such wait state is inserted to cover delay of TXT buffer RAM.
If index of Selected TXT buffer changes (due to another higher priority TXT buffer becoming Ready or change of TXT
buffers priorities) during validation process or after validation process was finished (TX arbitrator FSM is in Validated
state), TXT buffer validation process restarts with newly Selected TXT buffer.
If Validated TXT buffer suddenly becomes Unavailable (due to Set abort SW command), TX arbitrator signals immediately
(in the same clock cycle) to Protocol control FSM that there is no Validated TXT buffer (this is done to avoid control
hazards on TX frame datapath and it is further explained in 3.18.10) and TX arbitrator FSM moves to Idle state. Several
use-cases are explained in 3.51 and 3.52.

67

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

When there is Validated TXT buffer, Protocol control FSM issues Lock command during bus idle or third bit of inter-
mission. In such case TX arbitrator goes to Locked state and TXT buffer becomes Used from TX arbitrators point of
view (TXT buffer FSM itself goes to TX in progress). Protocol control then transmitts frame from this TXT buffer and
upon its end it issues Unlock command. TXT buffer then becomes either Available or Unavailable (see 3.17.1).
If during TXT buffer validation process, TX Arbitrator detects parity error in Metadata, Identifier or Timestamp words, it
immediately aborts validation of such TXT buffer, and signals this to TXT Buffer. If TXT Buffer is “Used” (transmission
is being executed from it), and TX Arbitrator detects that parity is corrupted on a data word which is being transmitted,
it also signals this to TXT Buffer.

No TXT Buffer available

Lock

Select Low
Timestamp word

Select High
Timestamp word

Select Frame
format word

Select Identifier
word

Validated

Locked

Idle

Any TXT Buffer
available

Unlock

Wait state elapsed

Wait state elapsed,
Timestamp valid Wait state

elapsed

Wait state
elapsed

Selected
TXT buffer
changed

Legend:

Validation process

Validated TXT
buffer indication set

Figure 3.32: TX arbitrator FSM

Table 3.49: TX arbitrator - TXT buffer processing

Filter name Description
Unavailable TXT buffer is Unavailable when it is not Available for transmission as defined in 3.17.3. Such a

TXT buffer is ignored by TX arbitrator.
Available TXT buffer is Available when it is Available for transmission as defined in 3.17.3.
Selected TXT buffer is Selected when it is Available with highest priority out of all Available TXT buffers.
Validated TXT buffer is Validated when it is Available for transmission, its Timestamp comparison has been

executed and Metadata from TXT buffer RAM (Frame format word) has been loaded to capture
registers for CAN core.

Used TXT buffer is Used after CAN core issues Lock command on Validated TXT buffer and is
transmitting from this TXT buffer.

68

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.50: TX arbitrator operation

Step External action (SW or external
components)

HW action

1 No TXT buffer is Available.
2 SW fills TXT buffer 1 and issues

Set ready command to this TXT
buffer.

TXT buffer 1 FSM goes to Ready state is and therefore Available
for TX arbitrator. As this is only TXT buffer which is Available,
Priority decoder selects it as highest priority Available TXT buffer.

3 TX arbitrator FSM loads Lower timestamp word from TXT buffer
1 RAM and stores it to auxiliarly register.

4 TX arbitrator FSM loads Upper timestamp word from TXT buffer
1 RAM and executes comparison of timestamp input and
timestamp of CAN frame in TXT buffer 1 (Lower word is in
auxiliarly register and Upper word is on output of TXT buffer 1
RAM). When timestamp is lower than timestamp of CAN frame
in TXT buffer 1, TX arbitrator waits, otherwise it proceeds to step
5.

5 timestamp is incrementing (as it
counts running time within a
system) and it reaches value of
CAN frame timestamp in TXT
buffer 1.

TX arbitrator notices timestamp input is now higher than
timestamp of CAN frame in selected TXT buffer. At this moment
TX arbitrator proceeds with frame validation.

6 TX arbitrator FSM loads TX frame metadata from TXT buffer 1
RAM (Frame format word) to double-buffer registers. These are
not visible to CAN Core, they hold metadata internally.

7 TX arbitrator FSM loads TX frame identifier from TXT buffer 1
RAM (Identifier word) to Identifier capture register. At the same
clock cycle, TX arbitrator FSM loads metadata from double-buffer
registers to capture registers on output of TX Arbitrator. Reffer to
3.18.9 for explanation.
TXT buffer 1 becomes “validated” and TXT arbitrator signals that
there is a valid TX frame for transmission to CAN core.

8 When Protocol control FSM is in sample point of third bit of
intermission or bus idle, it issues Lock command to TXT buffer 1
(TXT buffer 1 becomes Used, TXT buffer FSM moves to TX in
progress state) and TX arbitrator becomes Locked.

9 TX arbitrator is Locked and it is waiting for Unlock command. No
TXT buffer validation is in progress. If another higher priority TXT
buffer became Available this has no effect as frame transmission is
already in progress.

10 Protocol control transmitts frame from TXT buffer 1, and issues
Unlock - done command to TXT buffer 1 (TXT buffer 1 becomes
Unavailable and TXT buffer FSM moves to TX OK). Since TXT
buffer 1 was only TXT buffer which was Available before the
transmission, now there is no TXT buffer which is Available.
Therefore no TXT buffer is Selected, and no TXT buffer validation
is in progress. TX arbitrator signals there is no Validated TXT
buffer to CAN Core.

11 SW reads state of TXT buffer 1
and finds out whether transmission
was aborted or it ended succesfully.

69

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.51: TX arbitrator - use-case 1

Step External action (SW or external
components)

HW Action

1 SW configures priority 1 to TXT
buffer 1 and priority 2 to TXT
buffer 2. SW fills TXT buffer 1 and
TXT buffer 2 by CAN frames. SW
issues Set ready command to TXT
buffer 1.

TXT buffer 1 FSM goes to Ready state and therefore TXT buffer
1 becomes Available from TX arbitrators point of view. Since this
is only Available TXT buffer, it becomes Selected.

2 TX arbitrator performs validation process (loads timestamp words,
executes timestamp comparison, loads metadata and identifier)
and TXT buffer 1 becomes Validated. TX arbitrator signals to
CAN core that there is validated TXT buffer for transmission.

3 SW Issues Set ready command to
TXT buffer 2.

TXT buffer 2 FSM goes to Ready state and therefore TXT buffer
2 becomes Available from TX arbitrators point of view. As TXT
buffer 2 has higher priority than TXT buffer 1, TXT buffer 2
becomes Selected by Priority decoder.

4 TXT buffer validation process restarts with TXT buffer 2. During
this time TXT buffer 1 remains Validated (TXT buffer 1 is still
Available). If during validation process of TXT buffer 2, Protocol
control issued HW Lock command, transmission would still be
started from TXT buffer 1.

5 TX arbitrator finishes validation process (loads timestamp words,
executes timestamp comparison, loads metadata) of TXT buffer 2.
At the end, TXT buffer 2 becomes Validated and TXT buffer 1
(which was Validated till now) becomes Available.

6 Protocol control issues Lock command and since now TXT bufer 2
is Validated, transmission starts from TXT buffer 2. TX arbitrator
becomes Locked.

Note: This allows performing validation of another TXT buffer while previous TXT buffer is still Validated. Only when
validation process is finished, index of Validated TXT buffer will be changed to new TXT buffer. The reason
behind this is following: If TXT buffer is validated and SW decides to issue Set ready to another TXT buffer
which is higher priority, Lock command might arrive just slightly after this moment (SW and Protocol control have
no synchronisation). If first TXT buffer did not remain validated during validation process of new TXT buffer,
tran_frame_valid would need to drop low before the validation process of second TXT buffer is finished. This
would cause that for some short time, Protocol control would not have any TXT buffer available for transmission,
while actually two TXT buffers are in Ready state. This effect is undesirable.

Note: Due to meta-data double buffering, validated TXT buffer is swapped atomically (TXT buffer index, identifer and
loaded metadata) from Protocol control point of view. It can never occur that e.g. data will be transmitted from
TXT buffer 1 with incorrect metadata or identifier, this would be a bug.

Note: This behaviour is necessary, since TXT buffer which is Validated suddenly becomes Unavailable due to Set Abort
command. If tran_frame_valid did not drop low immediately, it could happend that Protocol control would issue
Lock command on a TXT buffer which was Unavailable (in Aborted state).

70

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.52: TX arbitrator - use-case 2

Step External action (SW or external
components)

HW Action

1 SW configures TXT buffer 1 priority to 1
and TXT buffer 2 priority to 2. SW fills
TXT buffer 1 and TXT buffer 2 RAMs by
CAN frames. SW Issues Set ready
command to TXT buffer 1 and TXT
buffer 2.

TXT buffers 1 and 2 become Available and TXT buffer 2
becomes Selected because it has higher priority than TXT
buffer 1.

2 TX arbitrator performs TXT buffer 2 validation process
(loads timestamp words, executes timestamp comparison,
loads metadata and identifier) and TXT buffer 2 becomes
Validated. TX arbitrator signals to CAN core that there is
Validated TXT buffer for transmission.

3 SW Issues Set abort command to TXT
buffer 2.

TXT buffer 2 which is now Validated becomes Unavailable.
TX arbitrator immediately (in the same clock cycle) signals
to CAN core that no TXT buffer is available for transmission
(tran_frame_valid drops low).

4 As TXT buffer 1 is now only Available TXT buffer and thus
it becomes Selected.
TX arbitrator proceeds with validation of TXT buffer 1 and
upon its end when TXT buffer 1 becomes Validated, it
signals that there is available frame for transmission.

Table 3.53: TX arbitrator - use-case 3

Step External action (SW or external
components)

HW Action

1 SW stores a frame to a TXT Buffer
1 and issues Set ready command.

TXT Buffer 1 becomes available from TX Arbitrator point of view.

2 TX Arbitrator starts validating TXT Buffer 1. It reads out
Metadata, Identifier, Timestamp Low/High words. During each of
these words, it checks that parity of word being read is correct. If
not, it stops validation of this TXT Buffer, and it signals this to
TXT Buffer 1.

3 TXT Buffer 1 moves to Parity Error state.

3.18.2 Priority decoder

File: priority_decoder.vhd

Priority decoder selects highest priority TXT buffer from all Available TXT buffers combinatorially. Such TXT buffer
becomes Selected. Priority of TXT buffers is given by SW (TX_PRIORITY register). If no TXT buffer is Available,
Priority decoder signals it on its output and no TXT buffer is Selected (and TXT buffer validation will not be started).
If two Available TXT buffers have equal priority, TXT buffer with lower index is selected. Priority decoder provides index
of Selected TXT buffer on its output.
Priority decoder is implemented as comparator tree with 3 levels (see Figure 3.33). Each level contains so called “decoder
cells”. Decoder cell selects higher priority TXT buffer from two TXT buffers. Each decoder cell behaves like so:

71

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

• When only one of the two TXT buffers is Available it is automatically selected, its index is propagated as winner
of comparison and “Available” output of this decoder cell is high.

• When no TXT buffer input is Available, output_valid is low.

• When both TXT buffer inputs are Available, output_valid is high and index TXT Buffer with higher priority is
propagated as winner.

Priority decoder supports up to 8 input TXT buffers. If less than 8 TXT buffers are configured (see txt_buffer_count),
unused inputs are driven to zeroes.

priority_decoder

Decoder
cell

TXT Buffer 1 priority

TXT Buffer 2 priority

TXT Buffer 1 available

TXT Buffer 2 available

TXT Buffer 3 priority

TXT Buffer 4 priority

TXT Buffer 3 available

TXT Buffer 4 available

TXT Buffer 5 priority

TXT Buffer 6 priority

TXT Buffer 5 available

TXT Buffer 6 available

TXT Buffer 7 priority

TXT Buffer 8 priority

TXT Buffer 7 available

TXT Buffer 8 available

Priority
Available
Winner

Priority

Available
Winner

Priority

Available
Winner

Priority
Available
Winner

Priority

Available
Winner

Priority

Available
Winner

Available

TXT Buffer
index

Level 1 Level 2 Level 3

Winner
Decoding

Logic

Winner

Decoder
cell

Decoder
cell

Decoder
cell

Decoder
cell

Decoder
cell

Decoder
cell

Figure 3.33: Priority decoder block diagram

72

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.18.3 TXT buffer change between transmissions

Table 3.54: Selected TXT buffer changed between transmissions

Step SW action HW action / State
1 SW fills TXT buffer 1 RAM. SW enables

retransmitt limitation and configures
Retransmitt limit to 5.

TXT buffer 1 FSM is in Empty State.

2 SW issues Set ready command to TXT
buffer 1.

TXT buffer 1 FSM moves to Ready state. TXT buffer 1
becomes Available from TX arbitrators point of view.

3 TX arbitrator performs validatation and TXT buffer 1
becomes Validated, TX arbitrator signals this to CAN core.
CAN core issues Lock command and starts transmitting from
TXT buffer 1. TXT buffer 1 becomes Used and TXT buffer
1 FSM goes to TX in progress state

4 An error frame occurs or arbitration is lost. Protocol control
signals Unlock - arbitration lost or Unlock - error frame”
commands. TXT buffer 1 becomes Unavailable , TXT buffer
1 FSM moves to Ready and Retransmitt counter is
incremented to 1.

5 SW fills TXT buffer RAM 2. SW Issues
Set ready command to TXT Buffer 2.

TXT buffer 2 moves to Ready state. Lets assume TXT
buffer 2 has higher priority than TXT buffer 1.

6 Now there are two Available TXT buffers (1 and 2). TXT
buffer 2 becomes Selected by Priority decoder because it has
higher priority.

7 TX arbitrator performs validation and TXT buffer 2 becomes
Validated, TX arbitrator signals this to CAN core.

8 CAN core issues Lock command, TXT buffer 2 becomes
Used (transmission starts by CAN core). At this moment
Retransmitt counter is cleared because TXT buffer used for
current transmission (TXT buffer 2) is different from the one
for previous transmission (TXT buffer 1). (Logically,
counting retransmissions on TXT buffer 2 shall not include
one previous failed transmission from TXT buffer 1, because
it is different CAN frame which is being transmitted).

3.18.4 TX Arbitrator corner-cases

TX arbitrator must react on following events which are all not synchronized:

• Change of TXT buffer priorities by SW -> possibly change of selected TXT buffer.

• Change of TXT buffer state (due to SW commands) -> possibly change of selected TXT buffer.

• Lock command from Protocol control.

Handling of these events is resolved like so:

• Lock command shall never occur when TX Arbitrator FSM is Idle.

• Unlock command shall never occur when TX Arbitrator FSM is not Locked.

73

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

• Lock command shall only occur when there is TXT buffer available for transmission, or when it was available for
transmission in previous clock cycle. It might happend, that Lock command and Set abort command are active
simultaneously. Due to Set abort command, it might be that only Available TXT buffer becomes immediately
unavailable, therefore Lock command is active when no Available TXT buffer is signalled. This is OK since TXT
buffer FSM resolves simultaneous Set abort and Lock command.

• Lock command occurs at the same time as Selected TXT Buffer is changed. Lock command shall have priority
and TX Arbitrator FSM shall become Locked.

• TXT Buffer validation process is about to be finished, but Lock command occurs. Lock command shall have
priority, TX Arbitrator FSM shall become Locked and Metadata, Identifier capture registers shall not be preloaded!

3.18.5 TXT buffer addressing

During TXT buffer validation process, TX arbitrator is accessing TXT buffer memories and loads Frame format, Identifier,
Timestamp low and Timestamp High words, therefore TXT buffer RAM address on port B is given by TX arbitrator
FSM.
During transmission when TX arbitrator is Locked, TX arbitrator holds index of Used TXT buffer. During this time,
Protocol control FSM provides address of memory word from which it reads relevant data word for transmission. TX
arbitrator uses this address to drive TXT buffer address and index of Used TXT buffer to multiplex read data. Data
memory words (see 3.10) are addressed during transmission of data field and Protocol control transmitts value of data
field from these memory words. Each next 4 bytes of data field correspond to one memory word in TXT buffer RAM.
From output of TXT buffer RAM, this memory word is loaded to TX shift register and transmitted from there (see
3.14.1). Therefore Protocol control provides address of data word with sufficient reserve to cover latency of TXT buffer
RAM as is shown in Table 3.55. Metadata and Identifier for transmission are available from capture registers in TX
arbitrator which were loaded during TXT buffer validation process.

Table 3.55: TXT buffer RAM adressing during transmission

CAN frame field Memory word in TXT buffer
addressed by Protocol control

Meaning of data loaded to TX shift register

DLC Data word 0 data field bytes 0 .. 3
data field byte N * 4 - 1 Data word N + 1 data field bytes (N * 4) to (N + 1) * 4

3.18.6 TXT buffer RAM access

TXT Buffer RAM has clock gating implemented if target_technology = 0 (ASIC). In such case, clocks are enabled only
when there are write (by user) or read accesses (by TX Arbitrator or Protocol control FSM) to RAM. If TX Arbitrator
is performing TXT buffer validation process, the clocks are ungated during this process since TX Arbitrator is reading
metadata words from TXT buffer RAM. If Protocol control FSM is reading data words (during transmission of data
field), TXT buffer RAM clocks are ungated when new word shall be read (when read pointer is updated by Protocol
control FSM).

3.18.7 TX frame timestamp comparison

Part of TXT buffer validation process is comparison of timestamp input with timestamp of CAN frame in TXT buffer
which is currently being validated. If timestamp input is lower than timestamp of CAN frame in currently validated

74

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

TXT buffer, validation process is paused. When timestamp input is equal to or higher than timestamp of CAN frame
in currently validated TXT buffer, TXT buffer validation proceeds. If during this time index of Selected TXT buffer
changes, validation process is restarted.
Comparison of timestamps realizes Time triggered transmission functionality as is described in 9.2 of [1]. Only when
timestamp input passes (desired moment of transmission passes), TXT buffer is admited for transmission to CAN core.
This does not mean that CAN core will transmit the frame immediately! CAN core will transmitt such frame in nearest
bus idle or when it samples dominant bit during third bit of intermission. Since TXT buffer validation process takes 6
clock cycles, timestamp input must reach TX frame timestamp at latest 6 clock cycles of System clock before sample
point of a bit to be considered for transmission from following bit. Mismatch between the time when frame validation
finishes due to transmitted frame timestamp passing and sample point of SOF bit can be up to two bit times as is
demonstrated in Figure 3.34. This situation can be avoided if change of time is synchronized in a system with sufficiently
large period of counting on timestamp input (close to Bit time period).

Bit time segment TSEG1 TSEG2 TSEG1 TSEG2 TSEG1 TSEG2

Protocol control Idle SOF

Lock

TXT buffer FSM state Ready TX in progress

CAN TX

Timestamp input 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

TX frame timestamp 15

Timestamp passed

TXT Buffer validated
TXT buffer validation finished

Nearly two bit times between reaching desired transmission time and sample point of SOF

a e

c

d

b f

Figure 3.34: Time triggered transmission

Consider having two TX frames with timestamps 10 (in TXT buffer 1) and 50 (in TXT buffer 2). Lets assume that TXT
buffer 2 has higher priority and it is therefore Selected and validation process is in progress. It finishes its validation wehn
timestamp input reaches 50. Although CAN frame in TXT buffer 1 has lower timestamp, it is transmitted after frame
from TXT buffer 2 because TXT buffer 2 has higher priority! Therefore TXT buffer priority is at any moment considered
first during TXT buffer selection and CAN frame timestamp is considered only from Selected TXT buffer.

3.18.8 Lock and Unlock commands

Protocol control FSM issues Lock command in third bit of intermission (when it samples dominant bit) or during bus idle
when there is Validated TXT buffer available. In such case CTU CAN FD becomes transmitter of following CAN frame.
After Lock command, TX arbitrator becomes Locked and signalling of Validated TXT buffer remains high during whole
frame. If there is no TXT buffer Validated so far and TXT buffer becomes Validated just slightly after Protocol control
samples dominant bit during third bit of intermission or bus idle, unit becomes receiver and frame from Validated TXT
buffer is not transmitted. If suspend transmission field is transmitted and Protocol control samples dominant bit, it does
not issue Lock command and becomes receiver of following frame.

3.18.9 Metadata double-buffering

During TXT buffer validation process, TX arbitrator first reads Frame format word from TXT buffer RAM and stores it
in internal registers which are invisible to CAN core. In the next step TX arbitrator reads Identifier word from TXT buffer
RAM and stores it to capture register which is available to CAN core. At the same time internal registers with metadata
are moved to capture registers for metadata. Therefore, reading of metadata from TXT buffer RAM is double-buffered.
Both identifier and metadata available for CAN core are changed at once (atomically), therefore it will never happend that

75

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Identifier in capture registers corresponds to different CAN frame than metadata in capture registers. This is necessary
as when there is Validated TXT buffer, another TXT buffer validation process can be in progress. In change was not
atomic, CAN core could issue Lock command and transmitt e.g. ID from TXT buffer 1 and metadata from TXT buffer
2.

3.18.10 TX datapath hazard protection

TX frame datapath (TX arbitrator + TXT buffers) are both manipulated by SW and HW commands simultaneously. This
fact opens question of hazards susceptibility. Such a hazard would occur, when e.g. TXT buffer FSM moved to Aborted
state after Set abort command, but Protocol control FSM still managed to issue Lock command and start transmission
from this TXT buffer. In such case, Protocol control FSM would transmitt from TXT buffer which is Aborted (and
therefore content of its RAM can be modified by SW). Due to combinatorial path between Set abort and indication of
Validated TXT buffer, it never happends that when Set abort command is issued to a TXT buffer, Protocol control FSM
would issue Lock command, therefore this situation will never occur. The relevant combinatorial path is shown in Figure
3.35.

CAN Core

Set
Abort

Command

Ready

=

TXT Buffer
Available

TXT Buffer Priorities

TXT Buffer
Available

FSM State

HW
Lock

Protocol
Control

Logic

Validated
TXT

Buffer

txt_buffer

txt_buffer_fsm

tx_arbitrator_fsm

priority_decoder

tx_arbitrator TXT Buffer
Index

Validation
Logic

Figure 3.35: TX datapath hazard protection

3.18.11 TX Abort + Retransmitt clear

TODO: This feature is not yet designed! If TXT Buffer which is currently Validated or Used becomes “Aborted”, then
retransmitt counter should be also cleared. It can happen that user will abort buffer, replace CAN frame within this
buffer and put ready again. In such a case, retransmitt counter should count only retransmissions of new frame! This
would become epecially important if we went for generic amount of TXT buffers! If config with only 1 TXT buffer was
used, then any abort in actual implementation leaves retransmitt counter untouched and any new frame would start with
this value of retransmitt counter... This could be implemented like so: If TXT Buffer FSM moves to Aborted, it gives
a signal. If last TXT Buffer that was used for transmission (not Selected one because when abort is applied on TXT
buffer, it will not be Selected!), is equal to index of TXT Buffer that just moved to Abort, then retransmitt counter will
be cleared. This still needs to be evaluated.

3.19 Interrupt Manager

File: int_manager.vhd

76

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Interrupt manager implements following functionality:

• Capture occurence of events/conditions within CTU CAN FD to Interrupt status register.

• Interrupt masking and enabling.

• Generation of level-based Interrupt output.

Occurence of events within CTU CAN FD is captured to Interrupt status register (INT_STAT) register when corresponding
interrupt is unmasked. When Interrupt is masked, correponding event is ignored. Interrupt mask is set by writing logic
1 to corresponding bit of INT_MASK_SET register. Interrupt mask is cleared by writing logic 1 to corresponding bit of
INT_MASK_CLR register. When a bit in Interrupt status register is set, it causes int output of CTU CAN FD to go
high when this interrupt is enabled. A bit in Interrupt status register is cleared by writing logic 1 to corresponding bit
in INT_STAT register. Value of int output is given by logical OR of all enabled interrupts which have Interrupt status
equal to logic 1. Interrupt output is registered to be glitch free. Interrupt is enabled by writing logic 1 to corresponding
bit of INT_ENA_SET register. Interrupt is disabled by writing logic 1 to corresponding bit of INT_ENA_CLR register.
When Interrupt status shall be set at the same clock cycle by an internal event of CTU CAN FD and cleared by write
to INT_STAT register, Interrupt will be set (set has priority over clear). Block diagram of single interrupt datapath is
shown in Figure 3.36. Available types of Interrupts are described in [2].

Interrupt Event/Condition

Interrupt
Mask

Interrupt
Status

Interrupt
Enable

Set

Clear

Set

Clear

Set

Clear

Contribution to
Interrupt output

Figure 3.36: Single interrupt datapath

77

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.20 Prescaler

File: prescaler.vhd

Prescaler implements following functionality:

• Time quanta measurement (for both nominal and data bit rates).

• Bit segments measurement (Sync_Seg, Prop_Seg, Phase_Seg1 and Phase_Seg2).

• Hard synchronisation and resynchronisation as defined in [1].

• Check if edge is valid for synchronisation (only one edge between two sample points).

• Generate TX trigger and RX triggers for each stage of pipeline.

• Switch between nominal and data bit rates.

Prescaler block diagram is shown in Figure 3.37.

prescaler

synchronisation_checker

bit_time_cfg_capture bit_time_counters

bit_segment_meter

bit_time_counters

bit_segment_meter

Segment
Counter

Time Quanta
Edge

Segment
Counter

Time Quanta
Edge

segment_end_detector

Segment
End

Request

Segment
End

Request

bit_time_fsm

Segment
End

TSEG1,
TSEG2

trigger_generator

Sync
Request

Sample
Request TX

Trigger

RX
Triggers

Nominal

Data

Resynchronization
edge

Sample
control

Synchronisation
control

Synchronisation
edge

Bit Timing
Configuration

Bit Time
Configuration

Hard
synchronisation

request

Figure 3.37: Prescaler block diagram

CAN FD standard ([1]) distuiguishes two bit rates: nominal and data. CTU CAN FD implementation distuighushes 3 bit
rate types as shown in Table 3.56. Protocol Control FSM configures correct bit rate in according parts of CAN frame as
explained in [1].

Table 3.56: Bit-Rate types

Bit rate type Corresponding [1]
bit rate

Description

Nominal Nominal Nominal bit rate for both transmitter and receiver.
Data Data Data bit rate for receiver of CAN FD frame.
Secondary Data Data bit rate for transmitter of CAN FD frame. Secondary sampling

point is used to detect bit error.

Prescaler contains separate logic for both bit rates (nominal and data). Logic for Secondary is the same as for Data.
Logic for single bit rate consist of Bit time counters module and Bit segment meter module. Doubled logic for nominal

78

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

and data bit rates is implemented to achieve better timing performance (shorter combinatorial paths) with slightly higher
resource usage when compared to common logic for nominal and data bit rates. During bits where bit rate is switched,
logic for both is functioning simultaneously, otherwise only logic for actual bit rate is functioning.

3.20.1 Bit rate configuration

Bit rates (nominal and data) are configured by SW when CTU CAN FD is disabled (SETTINGS[ENA] = ’0’) in registers
BTR (nominal) and BTR_FD (data). BTR and BTR_FD registers are writable only when SETTINGS[ENA]=’0’,
otherwise write access to these registers has no effect. Timing parameters for each bit rate are listed in Table 3.57.

Table 3.57: CTU CAN FD bit rate configuration

Parameter name Abbreviation Description
Bit rate prescaler BRP Time quanta = Bit rate prescaler * System clock period
Synchronisation
segment length

SYNC Length of Synchronisation segment is always 1 time quanta.

Propagation segment
length

PROP Configured in multiples of time quanta.

Phase 1 segment length PH1 Configured in multiples of time quanta.
Phase 2 segment length PH2 Configured in multiples of time quanta.
Synchronisation jump
width

SJW Configured in multiples of time quanta.

3.20.2 Bit time counters

File: bit_time_counters.vhd

Bit time counters module contains two counters: Time quanta counter and Segment counter. There are two intstances
of Bit time counters module, nominal (NBTCM) and data (DBTCM).
Time quanta counter measures length of time quanta and provides information that time quanta has elapsed (tq_edge_nbt/dbt=1).
Time quanta has elapsed when Time quanta counter is equal to Bit rate prescaler (therefore dividing the frequency of
System clock by Bit rate prescaler). tq_edge_nbt/dbt is either active continously (when Bit rate prescaler is 1), or
always for one clock cycle at the end of time quanta. When Bit rate prescaler is 1, time quanta is equal to System clock
period and Time quanta counter is not running.
Segment counter counts number of time quanta of actual bit segment (counts only when tq_edge_nbt/dbt=1).
Prescaler distuiguishes two bit segments: TSEG1 (Sync_Seg + Prop_Seg + Phase_Seg1 parts of bit) and TSEG2
(Phase_Seg2 part of bit). Segment counter counts from 0 and it is restarted upon the end of previous segment or upon
hard synchronisation. Segment counter for nominal(data) bit rate shall never overflow during nominal(data) bit rate.
Segment counter for nominal bit rate may overflow during data bit rate and Segment counter for data bit rate may
overflow during nominal bit rate. Current bit rate is determined by Protocol control FSM based on current field of CAN
frame and its type (see [1]).
NBTCM is enabled always, apart from situations when CTU CAN FD is disabled. This is to make sure, that if error is
detected during data bit rate (DBTCM is being used), Nominal bit time counter will be available for measuring duration
of Ph2 ASAP after error was detected. DBTCM is enabled only during data bit rate. During bits of CAN frame where
bit rate is switched, both NBTCM and DBTCM are running. When NBTCM or DBTCM are disabled, none of its both
counters are running (to save power). Both counters are erased when bit time segment ends to force alignment of nominal
and data time quanta in the moment of bit rate switch.

79

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.20.3 Bit segment meter

File: bit_segment_meter.vhd

Bit segment meter module measures length of bit time segments (TSEG1 and TSEG2). Bit segment meter module
maintains Expected segment length register. Expected segment length register contains number of time quanta that
current bit segment shall last. When current bit segment ends, Expected segment length register is loaded with length
of following bit segment. Loading of Expected segment length register is shown in Figure 3.38 for TSEG1 = 10 time
quanta, TSEG2 = 5 time quanta and BRP = 2. When positive resynchronisation occurs (see [1]), Expected segment
length register is increased (TSEG1 segment is lengthed) as in Figure 3.39. When negative resynchronisation occurs (see
[1]), Expected segment length register is decreased (TSEG2 is shortened). All rules for loading Expected segment length
registre are described in 3.58.

Table 3.58: Expected segment length register

Occurs when Loaded to value Description
End of segment TSEG1 due to
Segment counter equal to Expected
segment length register - 1.

PH2 Regular end of segment, no
synchronisation.

End of segment TSEG2 due to Segment
counter equal to Expected segment length
register - 1.

SYNC + PROP + PH1 Regular end of segment, no
synchronisation.

Positive resynchronisation with phase error
<= SJW.

SYNC + PROP + PH1 + Segment
counter

Segment counter = phase
error in this case, therefore
overall efect is as if TSEG1
was re-started with SYNC
completed as in [1].

Positive resynchronisation with phase error
> SJW.

SYNC + PROP + PH1 + SJW Lengthening of TSEG1 by
SJW.

Negative resynchronisation with phase
error <= SJW.

SYNC + PROP + PH1 - 1 Immediate end of segment.
TSEG2 ends, therefore
Expected segment length
register is preloaded with
length of TSEG1 - 1 (the
same effect as hard
synchronisation).

Negative resynchronisation with phase
error = SJW + 1.

SYNC + PROP + PH1 Immediate end of segment.
TSEG2 ends since magnitude
of phase error is equal to
amount of SJW. Length of
enxt segment is preloaded.

Negative resynchronisation with phase
error > SJW.

PH2 - SJW Shortening TSEG2 by SJW.

Hard synchronisation SYNC + PROP + PH1 - 1 TSEG1 length is subtracted
by 1 since hard
synchronisation shall restart
Bit with SYNC segment
completed according to
11.3.2.3 of [1].

When Segment counter is equal to or higher than Expected segment length register - 1, Bit segment meter module issues

80

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

End of segment request. Overally, End of segment request from Bit segment meter can be caused by following means:

• Segment counter equals Expected segment length - 1. Such a situation is shown in Figure 3.38.

• Immediate end of segment occurs. See Figure 3.40 (SJW = 3).

Immediate end of segment is signalled when there is negative resynchronisation during TSEG2 and phase error <= SJW.
Immediate resynchronisation causes Segment end request in the same clock cycle when resynchronisation edge occured.
In this situation, TSEG2 segment ends immediately, not one clock cycle later when updated Expected segment length
register would be equal to Segment counter + 1! This special case covers negative resynchronisation with BRP=1 and
phase error <= SJW. The extra clock cycle needed to update Expected segment length register is undesirable, therefore
immediate end of segment was introduced.

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 5 10

Segment counter 7 8 9 0 1 2 3 4 0 1 2

Segment end

Figure 3.38: Segment end - regular

System clock

Bit time segment TSEG1 TSEG2

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 12 5

Segment counter 1 2 3 4 5 6 7 8 9 10 11 0 1

Resynchronisation edge

Segment end

Figure 3.39: Positive resynchronisation

System clock

Bit time segment TSEG2 TSEG1

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 5 10

Segment counter 1 2 3 0 1 2 3 4 5 6 7

Phase Error 4 3 2 0 1 2 3 4 5 6 7

Resynchronisation edge

Segment end

Figure 3.40: Immediate segment end

81

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.20.4 Segment end detector

File: segment_end_detector.vhd

Segment end detector determines when segment ends based on requests as shown in Table 3.59. Segment end detector
captures these requests and processes them when time quanta has elapsed (tq_edge_nbt/dbt=1). If request arrives in
the same clock cycle as time quanta has elapsed, it is processed immediately and not captured.

Table 3.59: Segment end causes

Request type Issued by Description
Segment end request (Nominal). Bit segment meter (Nominal) Considered only during

nominal bit rate.
Segment end request (Data). Bit segment meter (Data) Considered only during data

bit rate.
Hard synchronisation Synchronisation checker. Considered only during

nominal bit rate. Shall not
occur during data bit rate.

3.20.5 Bit rate switch

Since both Bit time counters (nominal and data) are running in bits where bit rate is switched (BRS and CRC Delimiter),
length of TSEG2 of these bits is measured by both counters and both Bit segment meter modules can provide Segment
end request. Segment end detector only considers requests from resynchronisation module of actual bit rate as given by
Protocol control FSM (sp_control signal). Bit rate switch is shown in Figure 3.41 (BRP nominal = 2, BRP data =
1, TSEG1 nominal = 10, TSEG1 data = 7, TSEG2 data = 6). Note that in this Figure Time quanta counter, Time
quanta edge, Segment counter and Expected segment length register are different signals for nominal / data bit rate but
“Nominal” version are shown in nominal bit rate and “Data” versions are shown in data bit rate.
Note that in the moment of bit rate switch, Protocol control FSM provides actualized sp_control (bit rate) already in
Process pipeline stage. Sample control is driven by DFF which is bypassed in this moment so that first time quanta of
TSEG2 after bit rate switch is measured with proper bit rate selected!

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage Destuf Process Stuff

Sample control Nominal Data

Time quanta counter 0 1 0 1 0 1 0

Time quanta edge

Expected segment length 10 6 7

Segment counter 7 8 9 0 1 2 3 4 5 0 1

Segment end

Figure 3.41: Bit rate switch

3.20.6 Prescaler FSM

File: bit_time_fsm.vhd

82

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Reset

Tseg1

Tseg2

Segment
End

SETTINGS_ENA = ‘0’

SETTINGS_ENA = ‘1’

Segment
End

Figure 3.42: Prescaler FSM

Prescaler FSM determines actual bit time segment (TSEG1, TSEG2). Its state transition diagram is shown in Figure
3.42. Prescaler FSM issues requests to generate TX trigger and RX triggers to Trigger generator. TX trigger is requested
upon the end of TSEG2 segment (start of new bit, bit value is transmitted). RX trigger is requested upon the end of
TSEG1 segment (sample point, bit value is sampled).

3.20.7 Trigger generator

File: trigger_generator.vhd

Trigger generator processes requests to generate TX trigger (used to process data in Stuff pipeline stage) and RX triggers
(used to process data in Destuff and Process pipeline stages). Typical scenario is shown in Figure 3.43. As there is no
lower limit on length of TSEG2 from [1], resynchronisation which shortens length of TSEG2 to just one clock cycle can
occur (assuming BRP=1). In such case, RX trigger for Process pipeline stage and TX trigger for Stuff pipeline stage
would overlap. This is not acceptable since Stuff pipeline stage needs Process pipeline stage to be finished before it
can proceed (new transmitted data must be provided by Protocol control FSM before being “stuffed”). To avoid this
situation, TX trigger is shifted by one clock cycle as it is shown in Figure 3.44. Stuff pipeline stage is also shifted by one
clock cycle (from last clock cycle of TSEG2 to first clock cycle of TSEG1). As value of information processing time of
CTU CAN FD is 2, this situation corresponds to shortening length of TSEG2 to less than information processing time.
Shifting of TX trigger corresponds to delaying calculation of following bit value after information processing time from
sample point as defined in 11.3.2.4 of [1].

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage DestuffProcess Stuff

Segment end

Sample request

RX Trigger 0

RX Trigger 1

Sync request

TX Trigger

TSEG 1 ends

Sample request

Next pipeline stage

Tseg2 ends

Sync request

a f

b g

c

d

e

h

i

Figure 3.43: TX, RX triggers

83

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

System clock

Bit time segment TSEG1 TSEG2 TSEG1

Pipeline stage DestuffProcess Stuff

Resynchronisation edge

Segment end

Sample request

RX Trigger 0

RX Trigger 1

Sync request

TX Trigger

TSEG 1 ends

Sample request

Next pipeline stage

TX Trigger Shifted

Resynchronistation

Sync Request

a

b

k

l

c

d

e

h

i

Figure 3.44: TX trigger shift

3.20.8 Synchronisation control

Type of synchronisation is controlled by Protocol control FSM based on current part of CAN frame as is shown in Table
3.60.

Table 3.60: Synchronisation control

Synchronisation
type

Used during Protocol control
FSM state

Description

Hard
synchronisation

Suspend transmission, 2nd or
3rd bit of intermission, bus
idle, integration,
reintegration, FDF/res bit
edge in CAN FD Frame.

TSEG1 is started with SYNC segment complement.

No
synchronisation

All other parts Transmitter operating in data bit rate does not synchronise.

No
synchronisation
for phase error >
0

All other parts Node sending dominant bit does not perform
resynchronisation or hard synchronisation as a result of
positive phase error.

Resynchronisation All other parts All other recessive to dominant edges are used for
resynchronisation.

3.20.9 Synchronisation checker

File: synchronisation_checker.vhd

Synchronisation checker determines if synchronisation edge (detected by Bus sampling, see 3.21) is valid for synchro-
nisation accroding to 11.3.2.1 [1]. Synchronisation checker maintains Synchronisation edge flag. This flag is set when
synchronisation edge occurs, and cleared when TSEG1 ends (sample point of bit). If this flag is set and another syn-
chronisation edge occurs before the flag is cleared, such an edge is ignored and prescaler does not synchronize on this
edge. Therefore, if there is more than one synchronisation edge between two consecutive sample points, only first edge
is detected as valid edge and other edges are ignored. A situation where two synchronisation edges are detected (and
second one is filtered out) is shown in Figure 3.45. When synchronisation edge is valid for synchronisation, it causes
resynchronisation, hard synchronisation or no synchronisation according to rules in Table 3.60.

84

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Sample Point Sample Point

System clock

Bit time segment TSEG1 TSEG2 TSEG1 TSEG2

Synchronisation edge

Valid Synchronisation edge

Segment end

Valid Ignored Ignored Valid

a i

c e g k

d f h l

b j

Figure 3.45: Synchronisation edge filtration

85

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.21 Bus sampling

File: bus_sampling.vhd

Bus sampling module implements following functionality:

• Synchronize can_rx input to System clock domain.

• Sample bus in sample point (Destuff pipeline stage).

• Detect edges on sampled can_rx and can_tx. Detect synchronisation edges.

• Measure transmitter delay and calculate secondary sample point offset.

• Create secondary sample point (SSP).

• Detect bit error.

Block diagram of Bus sampling is shown in Figure 3.46.

bus_sampling

sig_sync
(synchroniser)

CAN RX

bit_error_detector

sample_mux

data_edge_detector

trv_delay_meas

tx_data_cache

RX Data

RX Data

Transceiver Delay

TX Trigger

Secondary Sampling Point Offset

TX Data

Secondary Sampling Trigger

CAN TX

Delayed
TX Data

Bit error

Previous Sample

Measurement
Control

Synchronisation
Edge

Sample control

ssp_generator

Figure 3.46: Bus sampling block diagram

Bus sampling implements 2 DFF synchronizer to synchronize asynchronous can_rx input. Output of this synchronizer
is sampled in sample point and stored to Previous bus value register. Output of this synchronizer is also connected as
data input to Bit destuffing module, therefore bus is sampled in the same moment as input serial data from CAN bus
are processed by Bit destuffing. This synchronizer is clocked with System clock and it is enabled always.
Bus sampling detects edges on can_rx and can_tx. Edges on can_tx are detected with granularity of System clock
period. Edges on can_rx are detected with granularity of time quanta (Edges are gated by Time quanta edge provided
by Prescaler). When CTU CAN FD is running in nominal bit rate, nominal time quanta is used. When CTU CAN
FD is running in data bit rate data time quanta is used. Only recessive to dominant edges are detected on can_rx.

86

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Furthermore, edge on can_rx is detected only when bus value (synchronizer output) has opposite value than bus value
sampled in previous sample point (Therefore previous sampled bus value must be recessive). Detected edge on can_rx is
propagated as synchronization edge to Prescaler. Edge on can_tx is detected regardless of previous sampled bus value,
but only recessive to dominant edges are detected. A typical scenario of edge detection on can_tx/can_rx is shown in
Figure 3.47 (with BRP=2).

System clock

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

CAN TX

CAN RX

RX (Synchronization) edges

TX edges

Detected immediately Detected at Time Quanta Detected immediately Detedted at Time Quanta

e h

a f

c i

d j

b g

Figure 3.47: Edge detection

3.21.1 Transmitter delay measurement

File: trv_delay_meas.vhd

Transmitter delay is roundtrip delay from can_tx to can_rx upon transmission of dominant bit. This delay includes
propagation of signal to physical layer transceiver, delay of transceiver and propagation of signal back. Transmitter
delay is measured in CAN FD frames on falling edge between FDF (EDL) bit and following r0 bit. In CAN 2.0 frames,
Transmitter delay is not measured. Transmitter delay is measured in multiples of System clock (not time quanta) and its
measurement is controlled by Protocol control FSM. Measurement is described in Table 3.61 and shown in Figure 3.48.
Measured transmitter delay can be read out from TRV_DELAY register via SW. Transmitter delay readable from
TRV_DELAY register is shadowed and this shadowed value is changed upon the end of transmitter delay measure-
ment. Therefore if SW reads TRV_DELAY during measurement, it will read previous measured value. New value will
be read only after the end of current measurement. To read proper value of transmitter delay from TRV_DELAY, at
least one CAN FD frame must have been transmitted since previous reset, otherwise 0 will be read from TRV_DELAY
register.

Table 3.61: Transmitter delay measurement

Step Action
1 Transmitter of CAN FD frame reaches sample point of FDF (EDL) bit. It enables measurement of

transmitter delay.
2 At start of next bit (Stuff pipeline stage, r0 bit), Protocol control transmits dominant bit.
3 An edge on can_tx is detected by Bus sampling. Transmitter delay counter is erased.
4 Transmitter delay counter is incremented by 1 each clock cycle.
5 The dominant value which was transmitted in Step 2, propagates to physical layer transceiver and back to

can_tx input of CTU CAN FD.
6 can_rx input is synchronized by 2 DFF synchronizer to System clock domain. Delay of synchronizer is

included in measured transmitter delay.
7 Bus sampling detects edge on can_rx. Measurement is finished, new value can bea read from

TRV_DELAY register.

87

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

System clock

Protocol control FSM EDL r0

Pipeline Stage DestuffProcess Stuff

Measurement enable

Time quanta counter 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Time quanta edge

CAN TX

CAN RX

RX edge

TX edges

Transceiver delay counter 0 1 2 3 4 5 6 7

Shadowed Transceiver Delay Previous Transceiver Delay 7

Measurement Start Measurement End

a c

b d

Figure 3.48: Transmitter delay measurement

3.21.2 Secondary sampling point offset

Secondary sampling point offset is calculated as offset from start of bit (SyncSeg field) in multiples of System clock.
Secondary sampling point offset can be configured by SW from SSP_CFG register according to Table 3.62. Secondary
sampling point Offset can have values between 0 and 127. If secondary sampling point offset is 0, secondary sampling
point is active in the same clock cycle as TX trigger. If secondary sampling point offset is higher than 127 (e.g. measured
transmitter delay + offset > 127), it is saturated to 127.

Table 3.62: Secondary sampling point configuration

Configuraton name Description
Offset Position of secondary sampling point is fixed at SSP_CFG[SSP_OFFSET]. Measured

transmitter delay is not taken into account.
Offset + transmitter
delay

Position of secondary sampling point is given as SSP_CFG[SSP_OFFSET] + Measured
transmitter delay.

No SSP Bit rate within Prescaler is never changed to “Secondary”, it only changes to “Data”
even for transmitter of CAN FD frame and bus is sampled at moment of data bit rate
sample point.

3.21.3 Secondary sampling point generator

File: ssp_generator.vhd

Secondary sampling point (SSP) is created by delaying TX trigger by the amount of SSP offset as is shown in Figure
3.49. When bit rate is switched from Nominal to Data, first SSP is delayed from TX trigger by the amount of SSP offset.
As SSP is used to detect bit errors by Transmitters of CAN FD frames during data bit rate, each next SSP is located
whole data bit time later from previous SSP (there is no resynchronisation by Transmitters in data bit rate, so bit time
is not shortened nor lengthened for them). The position of first three SSPs is shown in Figure 3.50. The relationship
between first and next SSPs is used by SSP generator module which creates SSP and provides it to Bit error detector.
Operation of SSP generator is described in Table 3.63.

88

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

System clock

Bit time segment TSEG1 TSEG2 TSEG1

TX Trigger

Secondary Sampling Point

Secondary Sampling Point Offset

a c

b d

Figure 3.49: Secondary sampling point

Time

Bit-rate Nominal

CAN frame

Sample
point

BRS

SSP 1 SSP 2

ESI DLC[3]

SSP
Offset

Data Bit
Time length

SSP 3

DLC[2]

Data Bit
Time length

Data

Start of
bit

Figure 3.50: Secondary sampling point positions

Table 3.63: SSP generator operation

Step Action
1 CTU CAN FD is transmitter of CAN FD frame where bit rate will be switched.
2 Protocol control switched bit rate in sample point of BRS bit. Protocol control configures SSP generator

to measure length of data bit time and to create first SSP.
3 SSP generator waits for first TX trigger in data bit rate and starts measurement of data bit time length

when TX trigger is active (by means of so called SSP counter (SSPC)). SSP generator starts measuring
delay of SSP offset from TX trigger (by means of so called Bit time measurement counter (BTMC)).

4 When next TX trigger occurs (at start of next bit), SSP generator stops measurement of data bit time in
SSPC. Now SSP generator knows distance between each next SSP (SSPC value).

5 When BTMC reaches value of SSP offset, SSP generator creates first SSP.
6 SSPC is restarted, and position of next sample point starts to be calculated by SSPC. Now the delay of

each next SSP is given by data bit time length (value of BTMC).
7 Step 5 is repeated for each SSP until the end of data phase of CAN FD frame. Note that SSPC can reach

value of SSP offset for first SSP sooner than BTMC measurement will finish (This position occurs when
SSP position is located within the same bit time). This does not mind, since value of BTMC will always
be higher than SSPC, therefore SSPC can count when BTMC is still running.

3.21.4 Bit error detection

File: bit_err_detector.vhd

Bit error detection differs for nominal bit rate, data bit rate and Secondary sampling as is shown in Table 3.64. Note
that bit error is detected by Bus sampling always when CTU CAN FD is enabled (SETTINGS[ENA] = 1). Bit error is

89

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Table 3.64: Bit Error detectiron

Bit-Rate Detected when Description
Nominal bit rate RX trigger 1 is

active
Detected when actual can_tx value (transmitted value in actual bit) is
not equal tocan_rx value (sampled bus value).

Data bit rate RX trigger 1 is
active

Detected when actual can_tx value (transmitted value in actual bit) is
not equal to can_rx value (sampled bus value).

Secondary sample Secondary sample
point

Detected when can_tx value on the output of TX data cache is not
equal to can_rx value (sampled bus value).

only ignored by Error detector module when it is irrelevant as shown in Table 3.26. Bit error detection in nominal bit
rate is shown in Figure 3.51.

System clock

Bit time segment TSEG2 TSEG1 TSEG2 TSEG1 TSEG2

TX Trigger

RX Trigger 0

RX Trigger 1

CAN TX

CAN RX

Bit Error

Transceiver Delay CAN TX=CAN RX, No Bit Error CAN TX /= CAN RX, Bit Error

c g

a d h

b e i

f j

Figure 3.51: Bit error detection

3.21.5 TX data cache

File: tx_data_cache.vhd

To detect bit error in Secondary sampling, CTU CAN FD needs to remember can_tx values of several bits transmitted on
CAN bus (secondary sample point can be so late, that it does not fit within the bit itself, and may occurs in following bits,
therefore, a transmitted bit value must be rememebered until secondary sample point). This functionality is implemented
by TX data cache. TX data cache is FIFO memory with each entry containing single bit. can_tx value is stored to TX
data cache directly after a bit was transmitted to the bus (SYNC segment, One clock cycle after Stuff pipeline stage).
TX data cache can store up to 8 bit values (therefore allowing 8 bits on the fly). A value is read from TX data cache
when secondary sampling point is active. TX data cache operation together with bit error detection during Secondary
Sampling is shown in Figure 3.52.

System clock

Bit time segment TSEG2 TSEG1 TSEG2 TSEG1 TSEG2 TSEG1 TSEG2 TSEG1

TX Trigger

Secondary Sample Point

CAN TX

CAN RX

TX Data cache entries 1 2 1 2 1 2 1 2 1

TX Data cache output

Bit Error

Transceiver Delay

Secondary Sample Point Offset

TX Data cache output = CAN RX, No Bit Error TX Data cache output = CAN RX, No Bit Error TX Data cache output != CAN RX, Bit Error

Push to TX Data cache

Pop from TX Data cache

c q

d h s l

a

b e i m

r t

f j n

g k o

Figure 3.52: TX data cache operation

90

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.22 Memory registers

File: memory_registers.vhd

Memory registers implement following functionality:

• Contains configuration and status registers of CTU CAN FD (accessed by SW).

• Issue commands to CTU CAN FD by SW.

• Read received CAN frame from RX buffer RAM.

• Write CAN frame to be transmitted to TXT buffer RAMs.

Block diagram of Memory registers is shown in Figure 3.53.

memory_registers

control_registers

Read

Write
Data

address_decoder

Write

Address

memory_regmemory_regmemory_regmemory_reg
Register
Select

Input
record

Read
Data

read_multiplexor

Output
record

Figure 3.53: Memory registers block diagram

Memory registers contain Control registers module which is generated by [7]. Control registers module and format of
CAN frame as is stored in TXT buffers and RX buffer are described in IP-XACT format with slight modifications as
explained in 3.65. Memory map is edited via Kactus2 tool.
From one side, Control registers module is accessed via simple RAM-like memory interface which is described in 2.1.1.
From other side, Control registers module is accessible via two records: Output record (signals going from Control
registers module to rest of CTU CAN FD) and Input record (signals going from rest of CTU CAN FD to Control registers
module).
Memory registers block decodes write accesses to TXT buffers (via TXT buffer 1 to TXT buffer 8 memory locations)
and maps these accesses to access TXT buffer RAMs.

3.22.1 Register types

Control registers module contains following types of registers:

Read/Write register

A DFF is instantiated and connected to output record (write value). When register is read, value in this DFF is returned.

91

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

Read only register

No DFF is instantiated. When register is read, value from Input record is returned.

Write only register

A DFF is instantiated and connected to output record (write value). When register is read, all zeroes are returned.

Read/Write Once register

A DFF is instantiated and connected to output record (write value). When register is read, value from Input record is
used. This type of register is used when write value has different meaning than read value.

92

CTU CAN FD IP Core - System Architecture
Version 0.18, Commit: Datasheet v2.5, 2023-12-15

3. SYSTEM ARCHITECTURE

3.22.2 Register attributes

Registers within Control registers module use additional IP-XACT attributes as is shown in Table 3.65.

Table 3.65: IP-XACT register attributes

IP XACT
attribute

Attribute
value

Applied on Used on registers Description

Modified
write value

clear Register
field

COMMAND,
MODE[RST],
INT_STAT,
INT_ENA_CLR,
INT_ENA_SET,
INT_MASK_CLR,
INT_MASK_SET,
TX_COMMAND,
CTR_PRES

No DFF is instantiated in the register, but
written value is only combinatorially decoded
and connected to Output record.

Is present IP_XACT
parameter
name

Register FILTER_*_MASK,
FILTER_*_VAL

Register is instantiated only when VHDL
generic with the same name as IP-XACT
parameter is set to “true”. When generic is
“false”, register is not instantiated and its reset
value is returned upon read (if it is readable).
Value of this generic is added to generics of
Control registers module.

Read action modify Register
field

RX_DATA Read signaller module is instantiated. This
module combinatorially decodes when register
field is being read and provides this information
in Output record. Used to signal to RX buffer
that there is a read from RX_DATA register.

Vendor
extension -
regLocks/
regLock

name=
register
name

Register EWL/ ERP/
CTR_PRES

If specified, register is writable only when lock
= 0. If not specified, lock input has no effect.
This is used to prevent user from writing
EWL/ERP/CTR_PRES unless CTU CAN FD
is in test mode.

93

Bibliography

[1] ISO11898-1 2015 - Road vehicles, Controller area network, Part 1, Data link layer and signalling

[2] CTU CAN FD - Datasheet

[3] Avalon@ Interface specification, 2018-09-26, Intel

[4] AMBA 3 APB Protocol, v1.0, Specification, ARM

[5] AMBA 3 AHB-Lite Protocol, v1.0, Specification, ARM

[6] CAN with Flexible Data-Rate, Specification, Version 1.0, April 2012, BOSCH

[7] Register map generation tool, https://github.com/Blebowski/Reg_Map_Gen

[8] CTU CAN FD - Testbench architecture

94

https://github.com/Blebowski/Reg_Map_Gen

	Format
	1 General Information
	1.1 Introduction
	1.2 Development tools
	1.3 Design automation
	1.3.1 Register map generation
	1.3.2 Documentation generation
	1.3.3 Xilinx Vivado component

	1.4 General coding guidlines
	1.5 Source code access
	1.6 ISO11898-1 2015 compliance

	2 Interfaces
	2.1 Memory Bus
	2.1.1 RAM-like interface
	2.1.2 APB
	2.1.3 AHB
	2.1.4 Limitations on 8/16 bit buses

	2.2 CAN Bus
	2.3 Timestamp
	2.4 Clock and reset
	2.5 Test probe
	2.6 Scan enable
	2.7 Configuration options

	3 System architecture
	3.1 Block diagram
	3.2 Reset architecture
	3.3 Clock architecture
	3.4 Testability
	3.4.1 Memory testability

	3.5 Sequential logic
	3.6 Resynchronisers
	3.7 Memories
	3.8 Pipeline architecture and triggers
	3.9 CAN Frame metadata
	3.10 CAN Frame format
	3.11 Test mode
	3.12 ISO vs NON-ISO CAN FD
	3.13 Integration vs. Reintegration
	3.14 CAN Core
	3.14.1 Protocol control
	Protocol control FSM
	Control counter
	Retransmitt counter
	Error detector

	3.14.2 Operation control
	3.14.3 Fault confinement
	Fault confinement rules

	3.14.4 Bit stuffing
	3.14.5 Bit destuffing
	3.14.6 CAN CRC
	3.14.7 Trigger multiplexor
	3.14.8 Bus traffic counters

	3.15 RX buffer
	3.15.1 Storing protocol
	3.15.2 Overrun flags
	3.15.3 Received frame timestamp
	3.15.4 Reading protocol
	3.15.5 RX Buffer RAM

	3.16 Frame Filters
	3.17 TXT buffer
	3.17.1 TXT buffer commands
	3.17.2 TXT buffer RAM
	3.17.3 TXT buffer - Transmission availability
	3.17.4 TXT buffer - Use cases

	3.18 TX arbitrator
	3.18.1 TXT buffer validation process
	3.18.2 Priority decoder
	3.18.3 TXT buffer change between transmissions
	3.18.4 TX Arbitrator corner-cases
	3.18.5 TXT buffer addressing
	3.18.6 TXT buffer RAM access
	3.18.7 TX frame timestamp comparison
	3.18.8 Lock and Unlock commands
	3.18.9 Metadata double-buffering
	3.18.10 TX datapath hazard protection
	3.18.11 TX Abort + Retransmitt clear

	3.19 Interrupt Manager
	3.20 Prescaler
	3.20.1 Bit rate configuration
	3.20.2 Bit time counters
	3.20.3 Bit segment meter
	3.20.4 Segment end detector
	3.20.5 Bit rate switch
	3.20.6 Prescaler FSM
	3.20.7 Trigger generator
	3.20.8 Synchronisation control
	3.20.9 Synchronisation checker

	3.21 Bus sampling
	3.21.1 Transmitter delay measurement
	3.21.2 Secondary sampling point offset
	3.21.3 Secondary sampling point generator
	3.21.4 Bit error detection
	3.21.5 TX data cache

	3.22 Memory registers
	3.22.1 Register types
	Read/Write register
	Read only register
	Write only register
	Read/Write Once register

	3.22.2 Register attributes

