
CTU CAN FD
IP CORE

Testbench Architecture

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Measurement

December 15, 2023

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

Document
Version

Author Date Change description

0.1 Ondrej Ille 04-2021 Initial version

i

Contents

1 Introduction 1
1.1 Test environment . 2

2 Testbench architecture 3
2.1 VIP Interface . 4
2.2 VIP Modes of operation . 4

2.2.1 Stand-alone mode . 4
2.2.2 Integrated mode . 5

2.3 Test execution flow . 5
2.4 TB communication mechanisms . 6
2.5 TB report mechanisms . 6
2.6 Random number generation . 6
2.7 Agents . 7

2.7.1 Clock agent . 7
2.7.2 Reset agent . 7
2.7.3 Memory bus agent . 7
2.7.4 Compliance test agent . 7
2.7.5 Timestamp agent . 9
2.7.6 Interrupt agent . 9
2.7.7 Test probe agent . 9
2.7.8 Feature test agent . 10
2.7.9 Reference test agent . 10

2.8 Test types . 10
2.8.1 Compliance tests . 10

PLI Interface . 11
2.8.2 Feature tests . 12
2.8.3 Reference tests . 12

ii

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

CONTENTS

3 VIP Integration guide 14
3.1 Connection of VIP signals . 14
3.2 Configuration of VIP generics . 15
3.3 Linking compliance test library . 15
3.4 Control of test execution . 15
3.5 Selection of CAN bus bit rate . 16
3.6 Control of DUTs time flow . 16
3.7 Test specific limitations . 16

iii

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

1. INTRODUCTION

1. Introduction

This document describes test-bench of CTU CAN FD. It provides guide to integrate main CTU CAN FD test-bench into
other (e.g. SoC level) test-benches, and it explains types of tests which are present within this test-bench. CTU CAN
FD contains following tests / test-benches:

1. Main test-bench with following types of tests:

• Compliance tests - Verifies compliance of CTU CAN FD to ISO11868-1 2015. All tests from ISO 16845-1
2016 are implemented. To run these tests, you need Compliance test library compiled and linked to simulation
via PLI. This library is part of open-source CTU CAN FD repository only in form of compiled binary (works
only with GHDL simulator in CTU CAN FD Gitlab environment). To compile this library and link it to TB
in other simulator, access to its source code is needed. This library can be provided based on commercial
agreement.

• Feature tests - Verify features / corner-cases of CTU CAN FD which are not directly related to compliance
with ISO11898-1 2015 (e.g. TX/RX buffers, Interrupts, special modes, frame filtering, etc.). These tests are
open-source.

• Reference tests - Each test applies stimulus recorded from reference implementation of CAN protocol, and
checks that CTU CAN FD can receive such sequence and accepts frame correctly (black-box testing of
cooperability). These tests are open-source.

2. Unit tests - Each test has its own test-bench. These tests are executed in development of CTU CAN FD to achieve
higher functional coverage of CTU CAN FD verification. These test-benches are not intended for integration into
other test-benches, and their description is beyond the scope of this document.

This document focuses on main CTU CAN FD test-bench, and further reffers to it only as test-bench. It has following
features:

• Written in VHDL, compliant with VHDL 2008. Reference model of CAN bus communication which is used in
compliance tests, is written in C++ 17, and it is part of Compliance test library linked to simulation as shared
object library (.so). Test-bench communicates with Compliance library via VPI interface (GHDL specific) or VHPI
interface (IEEE 1076 standard). Communication interface is chosen by using relevant .so file. For compiling
Compliance test library, reffer to documentation in commercial delivery of Compliance library. Compilation is
required for configuring the path of CTU CAN FD VIP inside TB.

• Can be run stand-alone (as in CTU CAN FD development), or integrated as part of other, e.g. UVM or OSSVM
system level test-bench.

• All test functionality is grouped in CTU CAN FD VIP, making it easy to integrate this block into other test-bench.

1

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

1. INTRODUCTION

• Configurable bit rate on CAN bus which is applied when running compliance tests (ISO 16845-1 requires testing
various CAN bus bit rates, therefore for full compliance, it is recommended to run the tests with various bit rates
as described in ISO 16845-1) and feature tests. Reference tests run with 2Mbit/500Kbit bit rate (common bit rate
in automotive CAN).

1.1 Test environment

CTU CAN FD development uses following dependecies/tools:

• GHDL - VHDL simulator

• GTKWave - waveform viewer.

• Vunit - Unit test framework for VHDL.

These dependencies are required only if test-bench is about to be executed in native CTU CAN FD development en-
vironment (developing CTU CAN FD in its original repository). In such cases, reffer to CTU CAN FD repository for
ready-made docker image with all dependencies installed.
If CTU CAN FD is being integrated into other system level test-bench with commercial simulator, none of the tools are
required. In such case, following resources are sufficient:

• Simulator with VHDL 2008 support

• Testbench source files (see “tb” folder in CTU CAN FD delivery package) and list file “tb_src.lst”. Reffer to
“Delivery package” in CTU CAN FD Gitlab page. These shall be compiled in “ctu_can_fd_tb” library.

• CTU CAN FD design source files (see “rtl” folder in CTU CAN FD delivery package) and list file “rtl_lst.txt”.
These shall be compiled in “ctu_can_fd_rtl” library.

• Compliance tests library compiled as shared object file (.so) and linked to simulation.

If compiled Compliance library is not present, then it is still possible to run the TB, however, compliance test types are
not available in such case.

2

2. Testbench architecture

Test-bench consists of two parts:

• CTU CAN FD VIP - contains all test code, test sequences, libraries, packages and agents. Compliance test library
is linked to simulation as part of CAN FD VIP.

• CTU CAN FD (DUT) - contains RTL.

Further in this document, CTU CAN FD VIP is reffered to only as VIP. CTU CAN FD design is reffered to as DUT.
There are two options how to use VIP:

• Stand-alone - Verification of DUT as stand-alone IP. TB top wrapper (tb_top_ctu_can_fd.vhd) binds DUT to
VIP, and controls simulation via Vunit directives (Vunit is required in stand-alone mode). VIP is used in this mode
in development of CTU CAN FD.

• Integrated - DUT is integrated as part of larger design, and VIP is instantiated as part of system level test-bench.
Reffer to Chapter 3 for instructions on how to integrate VIP into SoC level test-bench.

Block diagram of CTU CAN FD test-bench (with VIP used stand-alone) is shown in Figure 2.1.

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Compliance
 test Agent
(CAN Agent)

Feature test
 Agent

Reference
test Agent

 Test
controller
 agent

Compliance
 test
 library

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

Reference
data sets

 Vunit
manager
 process

 VIP
control

Timestamp
 Agent

Timestamp

Test probe
 Agent

Test probe

Figure 2.1: Test-bench block diagram

3

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

2.1 VIP Interface

CTU CAN FD VIP is connected to DUT (CTU CAN FD) via interfaces as shown in Table 2.1.

Interface Signals Connected to Description

Reset res_n Reset agent Control of asynchronous reset of DUT.
System clock clk_sys Clock agent Control of DUTs clock.
DFT support scan_enable Test port agent Control of DUTs scan mode.

CAN bus can_tx Compliance , Reference,
Feature test agents

Connection to CAN bus (driving CAN RX and
monitoring CAN TX of DUT).can_rx

Memory bus

scs

Memory bus agent

Chip select
swr Write enable
srd Read enable
sbe Byte enables
write_data Write data to DUT.
read_data Read data from DUT.
address Memory/Register address.

Interrupt int Interrupt agent Monitoring of DUTs interrupt output.

Test probe test_probe Feature test agent Monitoring of DUT “test port” for various test
features. Required only for feature tests.

Timestamp timestamp Timestamp agent Control of DUTs timestamp input.

VIP control
test_start

Test Controller agent
Request to start test.

test_done Indication test has finished.
test_success Test result (1 - passed, 0 - failed).

Table 2.1: CTU CAN FD VIP interface signals

2.2 VIP Modes of operation

VIP can operate in two modes: Stand-alone and Integrated.

2.2.1 Stand-alone mode

When operating in Stand-alone mode, stand_alone_vip_mode generic of VIP shall be set to “true”. In Stand-alone
mode, the behavior of VIP is following:

• VIP drives res_n of DUT.

• VIP generates clock signal for DUT (period is given by cfg_sys_clk_period generic of VIP).

• VIP monitors can_tx pin of DUT and drives can_rx pin of DUT (generates and monitors CAN frames).

• VIP generates memory transactions on its Memory bus to access registers of DUT.

• VIP monitors int pin of DUT.

• VIP monitors test_probe pin of DUT.

• VIP drives scan_enable pin of DUT.

• VIP is integrated in TB as on Figure 2.1 and simulation is controlled by Vunit manager (See tb_top_ctu_can_fd.vhd)

4

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

2.2.2 Integrated mode

When operating in Integrated mode, stand_alone_vip_mode generic of VIP shall be set to “false”. In Integrated
mode, the behavior of VIP is following:

• VIP does not directly drive reset of DUT. DUT is likely reset by System-wide reset on SoC level. Test-bench which
integrates VIP shall watch VIPs res_n output, and assert reset of DUT when reset is asserted on res_n output
of VIP (e.g. via combination of mirror and force/release statements available in System verilog and VHDL 2008).
Note that res_n is active low.

• VIP does not generate clock signal for DUT. DUT is likely clocked by some kind of clock controller, or oscillator
model which is part of SoC design. Since clk_sys signal of VIP si bi-directional, VIP watches the clock on this
interface and synchronizes its operation to actual clock of DUT (cfg_sys_clk_period generic of VIP shall be set
to actual period of this clock).

• VIP does not directly drive can_rx of DUT. It is likely that can_rx pin of DUT is connected to some form of
GPIO multiplexor or pad model (within a complex SoC simulation). Test-bench which integrates VIP, shall monitor
the can_rx output of VIP and directly connect it (without any simulation delay) to pad which corresponds to CAN
RX signal within a simulated system.

• VIP monitors can_tx output of DUT. Test-bench which integrates the VIP, shall drive can_tx by mirrored value
of can_tx DUT output (e.g. by mirror or hierarchical reference).

• VIP monitors int pin of DUT. Test-bench which integrates the VIP, shall drive int input of VIP by mirrored values
of DUTs int output.

• VIP monitors test_probe output of DUT. Test-bench which integrates the VIP, shall drive test_probe input of
VIP by mirrored value of DUTs test_probe output.

• VIP does not directly drive scan_enable pin of DUT. scan_enable pin is likely driven by SoC level DFT controller.
Test-bench which integrates VIP shall watch VIPs scan_enable output, and assert scan_enable input of DUT
if this signal goes high.

• VIP is integrated in custom test-bench. It is likely part of System-Verilog testbench top. VIP control interface
shall be driven by TB which integrates the VIP. Reffer to Chapter 3 for integration manual of VIP.

2.3 Test execution flow

Control of VIP by test-bench which integrates it, shall be following:

1. Set test_start = ’1’.

2. Wait until test_done = ’1’.

3. Check test_success. If test_success = ’1’, the test passed, otherwise test failed.

All tests follow basic test sequence: test_start = ’1’ is interpreted by Test controller agent. Test controller agent
invokes different agent based on type of test:

5

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

1. Compliance tests - Control over TB is relinquished over PLI to Compliance test library (shared object library linked
to simulation). Compliance test library forks its own test thread, and executes test sequence in this thread. Thread
communicates with rest of the test-bench via PLI (see 2.8.1) and controls Clock agent, Memory bus agent and
Compliance test agent (CAN agent). When test sequence ends, it signals this back to Test controller agent which
passes the result of test back to test_done and test_success.

2. Feature tests - Test controller agent requests from Feature test agent to start running the test. Feature test agent
uses all the other agents connected to DUT, and executes test sequence. After the test sequence, feature test
agent gives control back to Test controller agent which passes the result back to test_done and test_success.

3. Reference tests - Test controller agent requests running the test from Reference test agent. Reference test agent
reads Reference test files and applies them to DUT via Compliance test agents driver. When Reference test agent
sequence ends, it gives control back to Test controller agent which passes the result back to test_done and
test_success.

2.4 TB communication mechanisms

Agents in VIP communicate together via communication channel implemented in “tb_communication_pkg.vhd”. Com-
munication channel provides message passing mechanism (“send” function). Each agent implements single “receiver” of
messages (“receive_start” and “receive_finish” functions). Messages can be sent by any process at any time, however
only one message can be sent at a time (it is not possible to send multiple messages at the same time), over single
channel. Destination agent is selected with each message being sent. Communication is synchronous (“send” function
returns after message has been received by destination agent). CTU CAN FD VIP uses single channel (“default_channel”
signal) for communication.

2.5 TB report mechanisms

TB contains package (tb_report_pkg.vhd) which is used for reporting and checking in implemented tests. Any call to
“error_m”, “check(false,...)” or “check_false(true,...)” will make any test fail (test_success will stay 0 when test_done
goes high to signal end of test).
VIP contains own log verbosity mechanism. There are 4 verbosity levels:

verbosity_debug All logs are shown, including “debug_m” calls.

verbosity_info Only “info_m”, “warning_m”, and “error_m” calls are logged. Calls to “check(true,...)”/”check_false(false,...)”
are also logged.

verbosity_warning Only “warning_m” and “error_m” calls are logged.

verbosity_error Only “error_m” calls are logged.

With any verbosity level, calls to “check(false,...)”/”check_false(true,...)” are always logged, since this means a condition
causing test to fail occured. Verbosity level used by VIP can be configured by a call to “set_log_verbosity” function.

2.6 Random number generation

VIP contains pseudo-random number generator in “tb_random_pkg.vhd”. VIP initializes random number generator in
any test based on seed generic of VIP. It is therefore recommended to drive seed generic to a seed used within TB that

6

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

integrates the VIP. If seed is not set, then VIP is not randomized and tests will have the same coarse of actions each
time they are executed.
Following items are randomized within VIP:

• CAN frame contents, where applicable.

• Bit rate on CAN bus in feature tests which have “btr_” prefix in name. In other tests, bit rate is given by VIP
generics (see Table 3.2).

• Moments at which TX commands are issued to TXT buffers.

• Moments at which frames are polled from RX buffer.

• Transmitter delay in trv_delay and ssp_cfg feature tests.

Randomization is applied in majority of feature tests and compliance tests. CAN frame fields which have predefined value
in ISO16845-1 2016 for each test, are not randomized (to meet conditions of ISO 16845-1 2016).

2.7 Agents

2.7.1 Clock agent

Clock agent generates clk_sys clock. Period, jitter and duty cycle of generated clock can be configured. Clock
agent provides option to wait for one clock cycle. Clock agent is used by all test types. When VIP operates with
stadalone_vip_mode=true, then clocks generated by clock agent are used to clock DUT. If VIP operates with
stadalone_vip_mode=false, then clocks of CAN agent are ignored, and rest of VIP sychronizes to clk_sys pin of
VIP (clk_sys pin is used as input).

2.7.2 Reset agent

Reset agent generates DUTs reset (res_n). DUT is reset in beginning of each test. Polarity of reset can be configured.

2.7.3 Memory bus agent

Memory bus agent generates memory transactions compatible with DUTs RAM-like interface (see [1]). An example of
transfers on this interface is shown in Figure 2.2. This interface is compatible with Avalon interface. 8, 16 and 32 bit
accesses are supported. Read and Write accesses are supported. Read accesses are always blocking (see access functions
in “mem_bus_agent_pkg.vhd”). Write accesses can be blocking or non-blocking. Memory bus agent supports burst
accesses. Memory bus agent contains FIFO into which accesses can be posted, and then executed in bulk.

2.7.4 Compliance test agent

Compliance test agent (in compliance test library reffered to as “CAN agent”), is used by two test types: compliance
tests and reference tests. Compliance test agent is used to drive sequences to DUT and monitor/check whether DUTs
responses are as expected. Sequences which are driven/monitored by compliance agent, are produced by compliance test
library (or they are defined by reference data sets, in case of reference tests). Compliance test agent is connected to
DUTs can_tx and can_rx signals. Compliance test agent consists of two parts:

7

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

 Write access Read access Read after Write Write after Read

clk_sys

scs

swr

srd

sbe BE 0 BE 1 BE 2 BE 0 BE 1 BE 2 BE 1 BE 2 BE 1 BE 2

address 0000 0004 0008 0000 0004 0008 0004 0008 0004 0008

data_in Data 0 Data 4 Data 8 Data 4 Data 8

data_out Data 0 Data 4 Data 8 Data 8 Data 4

Figure 2.2: Memory bus agent transactions

Driver Drives sequences to can_rx of DUT.

Monitor Monitors sequences on can_tx of DUT.

Driver and monitor each contain FIFO which hold items to be driven and monitored. If there are multiple items in FIFO,
they are driven/monitored one after another, therefore creating sequence of bits (similar to UVM sequence and sequence
item). Such sequence represents CAN frames. Each driven item consists of:

value Logic value which is put on can_rx when this item is being driven.

time Duration for which this item is driven.

Each monitored item consist of:

value Logic value which is checked on can_tx during monitoring of this item.

time Duration for which this item is monitored. Value should be multiple of sample_rate.

sample_rate Sampling rate used for monitoring of this item. Monitored item is not checked permanently, but in discrete
moments separated by sampling rate. If can_tx does not match value of currently monitored item in the moment
of sampling, mismatch counter is incremented (and makes the test fail when it ends).

ISO 11898-1 2015 model in compliance test library translates CAN frames to sequences of driver and monitor items.
Sending frame to DUT, is implemented by translating bits of the frame into sequence of driver items, and driving it via
CAN agents driver. Similarly, checking of transmitted frame is implemented as monitoring sequence of items by CAN
agents monitor. Typically, compliance test library translates single bit on CAN bus to single driven/monitored item.
Sampling rate of monitored items is chosen to be equal to single time quanta (since ISO 16845 defines that time quanta
should be used as granularity of checking can_tx value).
Driver and monitor can operate simultaneously. This is used in following scenario: Transmit frame to DUT, and check
that DUT will issue dominant acknowledge at correct time. In such case, both driver and monitor are started at the same
time. If they both contain the same CAN frame (monitored frame must be converted to all Recessive bits with ACK bit
dominant), then such behavior is achieved. Alternatively, monitor can be delayed from driver by configurable time. This
feature allows compensating input delay of DUT.
Typical use-case of CAN agent is following:

8

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

1. Flush driver and monitor FIFOs (to be sure there are no remaining items).

2. Insert sequences to driver and monitor FIFOs.

3. Configure monitor delay.

4. Start driver and monitor.

5. Wait until driver and monitor are finished (during this time, communication channel is blocked).

6. Issue “check result” command to monitor. This will print error into simulator log, if any mismatches occured in
monitored sequence (causing test to fail).

An example of CAN agent operation in which Driver transmits a frame to DUT and monitor checks that DUT issues
ACK in correct moment is shown in Figure 2.3.

Figure 2.3: CAN agent example

2.7.5 Timestamp agent

Timestamp agent drivers timestamp signal of VIP. Timestamp agent generates up-counting sequence of values, syn-
chronous to clk_sys. Counting step, as well as number of cycles needed to advance to next value (prescaler) can
be configured. Timestamp agent is used by feature tests which verify timestamping of RX frames or time triggered
transmission.

2.7.6 Interrupt agent

Interrupt agent monitors int input of VIP. It is used to check whether DUTs interrupt is asserted or de-asserted. Polarity
of interrupt can be configured.

2.7.7 Test probe agent

Test probe agent spies on DUTs test_probe output. Test probe is used to observe CTU CAN FDs signals indicating
sample point and start of bit. Test-probe agent provides functions for synchronizing with DUTs start of bit or sample
point. Test probe agent is used by feature tests. Test probe agent also drives scan_enable input of DUT.

9

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

2.7.8 Feature test agent

Feature test agent is active only in feature tests. Upon invoking by test controller agent, it calls test specific sequence
(“*_ftest.vhd” files contain test sequences), based on name of the test (test_name generic). Feature test agent has
following capabilities:

• Contains another instance of CTU CAN FD. This instance is reffered to as Test node, and DUT communicates
with this node as part of feature tests.

• Signal delayers allowing to configure arbitrary can_tx -> can_rx delay for each node (DUT and Test Node).

• Ability to force bus level (value received by both nodes on CAN bus).

• Ability to force can_rx of single node (either DUT or Test Node).

• Ability to check value of can_tx of each node.

Capabilities are used by feature test sequence to verify certain functionality of DUT. Feature tests use higher level API
(higher than direct register access), to access functionality of DUT (see “feature_test_agent_pkg.vhd”).

2.7.9 Reference test agent

Reference test agent is used by reference tests. It executes test sequence from dedicated reference data set (refer-
ence_data_set_*_pkg.vhd). Each reference data set contains 1000 frames which were transmitted (and recorded) from
reference CAN implementation.

2.8 Test types

2.8.1 Compliance tests

Functional diagram of compliance tests is shown in Figure 2.4. Compliance tests execute all tests from ISO 16845-1 2016,
therefere providing complete compliance testing of CTU CAN FD towards ISO 11898-1 2015. CAN bus bit rate used by
these tests is configured via VIPs generics (therefore must be chosen at compile time). Several tests have limitations
with regards to allowed bit rate (reffer to 3.7 for these limitations). Also, several tests override the default bit rate to
meet conditions of the test given by ISO11898-1 2015 (e.g. test 7.6.23 calculates new bit rate from configured one, since
test requires it to use certain bit rate ratios).
When a compliance test is started, it gives control over TB to compliance test library via PLI interface. Compliance test
library forks a thread in which it exectues the test. Therefore, there are two contexts in compliance tests:

• Simulator context - Simulation is executed in this context, events are scheduled and VPI callbacks are executed.

• Test context -Test sequence from compliance test library is executed in this context.

Test sequence running in test context communicates with simulation via shared memory interface, which guarantees that
internal handles of simulator will only be accessed from simulator context, therefore not corrupting any internal memory
structures of simulation (signal handles, etc.).
Compliance test library contains model of ISO11898-1 2015, which serves as golden reference for generation of test
sequences which are then executed by CAN agent inside digital simulator. Reference model has following features:

10

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Compliance
 test Agent
(CAN Agent)

 Test
controller
 agent

Compliance test library

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

 Vunit
manager

 VIP
control

Timestamp
 Agent

Timestamp

 PLI
Interface

Commands
 to other
 agents

ISO 11898
 cycle
 accurate
 model

 ISO 16845
Test sequences

Figure 2.4: Compliance test

• Full support of ISO 11898-1 2015 (all three variants: CAN FD enabled, CAN FD tolerant, Classical CAN)

• Cycle accurate representation of CAN frame. Allows lenghtening/shortening bits to verify DUTs synchronization.

• Error insertion (all error types and positions can be modelled) and glitch insertion.

For more detailed architecture of compliance test library, reffer to documentation in commercial delivery of this library.

PLI Interface

As PLI interface, VIP supports VPI (GHDL specific) and VHPI interface (IEEE 1076 standardized). PLI interface itself
consists of set of signals over which communication is performed. These signals are listed in Table 2.2. Compliance
test library, acts as master on this interface. It pushes transactions into shared memory location (inside Compliance test
library itself), and simulator side of this interface “picks-up” these request with VPI/VHPI callback on pli_clk, and drives
them to PLI signals in VIP. Test controller agent then interprets these signals, and sends commands to target agent via
standard communication channel. VIP therefore acta as a slave on PLI interface. This approach guarantees that internal
signal handles of digital simulator are modified only from simulator context. PLI interface provides means for accessing
functionality of agents within TB. Compliance library can therefore control clock/reset generation, transactions to DUT,
CAN agent, etc.

11

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

Signal Description
pli_control_req TB is requesting run of compliance test from compliance library. Set by

VIP in early in compliance test run.
pli_control_ack Compliance test library acknowledge for pli_control_req.
pli_req Transaction request from compliance library
pli_ack Transaction acknowledge to compliance library.
pli_cmd Type of command/transaction being sent.
pli_dest Transaction destination agent.
pli_data_in Transaction data input.
pli_data_in_2 Transaction data input 2.
pli_str_buf_in Transaction string buffer input.
pli_data_out Transaction data output.
pli_clk PLI clock.

Table 2.2: PLI interface signals

2.8.2 Feature tests

Feature tests verify various “features” of CTU CAN FD as: Interrupts, register map, special modes, TX/RX buffers, etc.
These features are usually not directly related to ISO11898-1 2015, and they are specific to CTU CAN FD. Functional
diagram of TB during feature tests is shown in 2.5.
In feature tests, DUT communicates via CAN bus with another instance of CTU CAN FD located inside Feature test
agent (Test node), allowing it to invoke various situations inside of DUT. An example of such test sequence is following:

• Test reads size of DUTs RX buffer.

• Test invokes transmission of CAN frames by Test Node. Amount of frames transmitted is selected to achieve
overflow of RX buffer in DUT.

• During transmission of frames, test monitors that overflow occurs upon reception of frame which should fill RX
buffer memory (not before), therefore veryfing that overflow occurs properly.

Feature tests use bit rate on CAN bus set by VIPs generics (see 3.2). This bit rate is used for both DUT and Test node.

2.8.3 Reference tests

Reference tests apply bit-sequence (via CAN agent) to can_rx of DUT which was recorded from reference controller
implementation of CAN bus upon transmission of random frame. After this sequence is applied, test reads received
CAN frame from DUT, and checks it matches CAN frame which was supposed to be received. This approach provides
“black-box” like testing functionality. Reference tests contain 10 data sets, each with 1000 pre-recorded CAN frames.
Data set is chosen by “test_name” generic of VIP. Each frame from data-set is applied by following sequence:

1. Store bit sequence from data set to CAN agents driver.

2. Start CAN agent driver.

3. Wait till driver finishes.

4. Read CAN frame received by DUT and compare it with reference frame from data-set. This frame corresponds to
bit sequence from point 1.

12

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

2. TESTBENCH ARCHITECTURE

DUT

CTU CAN FD VIP

Memory
 bus
 Agent

Clock
Agent

Reset
Agent

Test controller agent

Interrupt
 Agent

Reset

System
 clock

Memory
 bus

Interrupt

Test-bench top

CAN bus

 Vunit
manager

 VIP
control

Timestamp
 Agent

Timestamp Feature test
 sequences

 Memory
 bus

 Test
Node

 Bus
forcing

Test control

CAN RX
 delay

Test

Commands to
 other agents

Figure 2.5: Feature test

13

3. VIP Integration guide

This chapter walks you through steps required for integration of VIP for CTU CAN FD into custom digital TB in
standalone mode (2.2). The guide assumes that DUT itself, has already been integrated into the design which is being
verified.

3.1 Connection of VIP signals

VIP signals shall be connected as described in Table 3.1.

Signal Description
clk_sys Mirror value of clk_sys DUT pin to this signal. This pin is “inout” of

VIP, however, it shall be driven as input.
res_n Implement force of res_n of DUT. When res_n of VIP is 0, res_n of

DUT shall be also 0. (When VIP asserts reset, DUT shall be reset).
int Mirror value of int DUT pin to this signal.
can_tx Connect to can_tx signal of DUT. This signal shall at any time

contain what DUT is transmitting on can_tx.
can_rx Implement force of can_rx signal of DUT. Alternatively, implement

wired-AND solution (if there are multiple nodes connected internally on
a bus). At any time, if VIP is transmitting 0 on can_rx, it shall be
present on can_rx of DUT. If VIP is transmitting 1, it shall be present
on DUTs can_rx unless over-written by 0 of another CAN node.

test_probe Mirror value of test_probe of DUT to this signal. This is verification
signal only, therefore it can be left unconnected in design.

timestamp Reffer to 3.6.
write_data Transactions on this memory interface shall be translated to memory

transactions on DUTs memory interface. A potentially best approach is
to force related signals on DUT inputs when scs signal of VIP is 1. If
scs = 0, then DUT memory interface can be driven by a master that it
is connected to in a design. It is not recommended to translate
transactions on this interface to memory transactions in higher levels of
memory bus hierarchy within a system (even if they will eventually end
in DUT). Such “indirect” translation would impose delay upon access
to DUT, and could affect test results.

read_data
address
scs
srd
swr
sbe
test_start Shall be driven by test-bench test control mechanism. Reffer to 3.4 for

further description.test_done
test_success

Table 3.1: CTU CAN FD VIP interface connection

14

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

3. VIP INTEGRATION GUIDE

3.2 Configuration of VIP generics

Generic Description
test_name Put name of test to this string. Reffer to [4] for list of tests available in

the VIP.
test_type Put “compliance” for compliance tests, “reference” for reference tests

and “feature” for feature tests.
stand_alone_vip_mode Set to false.
cfg_sys_clk_period Set to value which corresponds to clock period of DUT on sys_clk

input.
seed Set to seed which is used for randomization in your TB.
reference_iterations Leave default (1000).
cfg_brp Baud rate prescaler - Nominal bit rate (BTR[BRP] register of DUT).
cfg_prop Propagation segment of bit - Nominal bit rate (BTR[PROP register of

DUT).
cfg_ph_1 Phase 1 segment of bit - Nominal bit rate (BTR[PH1] register of DUT)
cfg_ph_2 Phase 2 segment of bit - Nominal bit rate (BTR[PH2] register of DUT)
cfg_sjw Synchronization jump width - Nominal bit rate (BTR[SJW] register of

DUT)
cfg_brp_fd Baud rate prescaler - Data bit rate (BTR_FD[BRP] register of DUT).
cfg_prop_fd Propagation segment of bit - Data bit rate (BTR_FD[PROP register of

DUT).
cfg_ph_1_fd Phase 1 segment of bit - Data bit rate (BTR_FD[PH1] register of

DUT)
cfg_ph_2_fd Phase 2 segment of bit - Data bit rate (BTR_FD[PH2] register of

DUT)
cfg_sjw_fd Synchronization jump width - Data bit rate (BTR_FD[SJW] register of

DUT)

Table 3.2: CTU CAN FD VIP interface connection

3.3 Linking compliance test library

Compliance test library needs to be first configured and built. Reffer to [3] for build instructions of compliance test library.
After compliance test library was built, there are following options how to link compliance test library to simulation:

• VPI interface - GHDL specific, as it is not standardized for VHDL. Can be linked wih “–vpi-lib” option of GHDL.

• VHPI interface - Interface standardized by IEEE 1076. Can be linked to any simulator supporting this interface.

Note that compliance test library is mostly C++ library, however, critical parts for VPI/VHPI interfacing are written
in C, therefore guaranteeing that linking mechanisms can find proper C names for VPI/VHPI start-up routines. If your
simulator does not support VHPI, reffer to [3] for instructions how to implement connection of compliance test library
to simulation.

3.4 Control of test execution

Type and name of test to be executed are selected at compile-time by VIP generics (test_name, test_type). Reffer
to [4] for list of available test names for each test type. It is up to scripting system calling digital simulator to set these

15

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

3. VIP INTEGRATION GUIDE

generics.
Start of test execution within a test-bench is done by setting test_start signal of VIP to 1. Test-bench shall then wait
until test_done = 1. At the time when test_done = 1, test_succes´ = 1 if the test passed. Otherwise, test_success
= 0. If test fails, reason of failure can be found from logs with error severity in simulator log.

3.5 Selection of CAN bus bit rate

Bit rate on CAN bus can be selected by VIP generics, it is therfore selected at compile time (see 3.2). It is up to scripting
system calling digital simulator to set these generics (or hard-code them in VIP instance in TB). bit rate configured in
VIP is used by VIP to configure DUT (via Memory bus). Note that this bit rate is used only for compliance tests and
feature tests. Reference tests ignore these settings, and always use 2Mbit/500 Kbit with 80% sample point.

3.6 Control of DUTs time flow

DUTs sees “time” flowing in a system in which it is integrated via timestamp input (reffer to [1, 2]). In an SoC design,
this input is probably driven by upcounting unsigned counter measuring flow of time within this SoC. If there is no
such capability, timestamp input of DUT is tied high. VIP contains Timestamp agent which shall drive timestamp
input of DUT. This is typically done in stand-alone mode of VIP operation, since there is no part of the design which
drives timestamp input. However, several feature tests can not function correctly without Timestamp agent generating
timestamp for DUT. For these tests, DUTs timestamp input shall be forced to value of VIPs timestamp output. For
other tests (compliance tests, reference tests and remaining feature tests), timestamp input can remain driven by design
which integrates DUT. Tests which require force of timestamp input are following:

• rx_settings_tsop - Verifies RX buffer timestamp option (timestamp in SOF or EOF).

• timestamp_low_high - Verifies functionality of TIMESTAMP_LOW and TIMESTAMP_HIGH registers.

• tx_arb_time_tran - Verifies time triggered transmission.

3.7 Test specific limitations

Several tests have following limitations when it comes to configuration options:

Compliance tests

BTR[BRP]=BTR_FD[BRP_FD] Limitation states that prescaler for nominal bit rate must be equal to prescaler for
data bit rate. This condition must be met for following tests: iso_7_8_3_1 and iso_7_8_4_1.

BTR[BRP]>2 Prescaler for nominal bit rate must be higher than 2. This condition must be met for following tests:
iso_8_8_1_2, iso_7_7_11, iso_8_7_1, iso_8_7_2, iso_8_7_4, iso_8_7_5, iso_8_7_6.

BTR[BRP]>1 Prescaler for nominal bit rate must be higher than 1. This condition must be met for following tests:
iso_8_7_1

BTR_FD[BRP_FD]>2 Prescaler for data bit rate must be higher than 2. This condition must be met for fol-
lowing tests: iso_8_8_1_3, iso_8_8_1_4, iso_8_8_2_3, iso_8_8_2_4, iso_8_8_3_1, iso_8_8_3_2,
iso_8_8_4_1, iso_8_8_4_2.

16

CTU CAN FD IP Core - Testbench
Version 0.1, Commit:Datasheet v2.5, 2023-12-15

3. VIP INTEGRATION GUIDE

These limitations occur due to lack of input delay compensation in compliance test library implementation.

17

Bibliography

[1] CTU CAN FD - System architecture

[2] CTU CAN FD - Datasheet

[3] ISO 16845 Compliance test library - Manual

[4] test_list.txt - Test list in CTU CAN FD VIP delivery package

18

	1 Introduction
	1.1 Test environment

	2 Testbench architecture
	2.1 VIP Interface
	2.2 VIP Modes of operation
	2.2.1 Stand-alone mode
	2.2.2 Integrated mode

	2.3 Test execution flow
	2.4 TB communication mechanisms
	2.5 TB report mechanisms
	2.6 Random number generation
	2.7 Agents
	2.7.1 Clock agent
	2.7.2 Reset agent
	2.7.3 Memory bus agent
	2.7.4 Compliance test agent
	2.7.5 Timestamp agent
	2.7.6 Interrupt agent
	2.7.7 Test probe agent
	2.7.8 Feature test agent
	2.7.9 Reference test agent

	2.8 Test types
	2.8.1 Compliance tests
	PLI Interface

	2.8.2 Feature tests
	2.8.3 Reference tests

	3 VIP Integration guide
	3.1 Connection of VIP signals
	3.2 Configuration of VIP generics
	3.3 Linking compliance test library
	3.4 Control of test execution
	3.5 Selection of CAN bus bit rate
	3.6 Control of DUTs time flow
	3.7 Test specific limitations

