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Abstract—The control of vehicles, industrial, and or motion
systems  requires  complex  controllers  with  defined  response
times. Many high-level control systems utilize complete POSIX-
based  operating  systems  capable  of  processing  data  from
cameras,  LIDARs,  and  other  sensors  by  running  complex
machine-learning algorithms. The fully preemptive variant of the
kernel  with  long-term  testing,  as  proceeded  by  example  on
OSADL Quality  Assurance  Real-Time  Farm,  provides  enough
guarantee for the timing of the control algorithms running on the
single system. However, the ability to deliver commands in time
to  other  components  is  limited  by  latencies  caused  by
communication hardware and related operating system drivers.
CAN and CAN FD are often used for this communication. Long-
term  evaluation  of  latencies  caused  by  system  load,  driver
implementation,  and  other  factors  is  critical  to  assess  system
reliability. Monitoring and checking the evolution of latencies in
the  mainline  Linux  kernel  source  tree  allows  for  resolving
problems before they propagate to production system updates.
The daily evaluation is the service of our continuous CAN/CAN
FD latency  testing  system.  CTU CAN FD IP core  is  used for
precise timestamping on the generator side. At the time of the
conference, we present data from daily testing of multiple kernel
configurations  running  more  than  one  year  already.  All
developed components are available in the source form and can
be reused by carmakers and other CAN bus users.
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I.  INTRODUCTION 
The  Czech  Technical  University  in  Prague  team  has

supported  companies  in  industrial  and  automotive
communications for over 30 years. The CAN communication
boards with a coprocessor for CAN open communication were
designed in the nineties. Later, many generations of CAN and
CAN FD  bus  and  automotive  ETHERNET  analyzers,  error
injection  systems,  and  other  tools  for  carmakers  such  as
SkodaAuto,  Porsche,  and  Volkswagen  have  been  delivered.
CAN and CAN FD IP cores and other FPGA solutions have
been  designed  for  general  and  special  purposes.  As  for  the

software side,  CAN/CAN FD drivers for  own and generally
available  hardware  have  been  developed  for  Linux  kernel,
NuttX,  RTEMS,  and  Windows  operating  systems.  The
LinCAN character  driver-based framework [1]  predates later
widely adapted Linux SockteCAN [2] by multiple years. When
SocketCAN gained momentum, bit-timing support, and some
drivers were provided to the SocketCAN mainline.

The  analysis  and  evaluation  of  communication  and
response latencies for control systems have been taken as the
critical part of the provided support and projects, and the tool
to evaluate CTU's LinCAN has been designed in parallel with
the subsystem and extended later to support even SocketCAN.
Then, in 2011, Volkswagen Group Research worked on an in-
kernel  Linux-based  CAN  gateway.  Because  previous  work
started by Pavel Pisa has been well known in the community,
the Department  of  Control  Engineering CTU FEE has been
contracted to provide a system for evaluating the latencies of
the CAN gateway. The experiments measured the latency of
the gateway, the time spent between receiving a CAN message
on one bus, processing it, and transmitting the message on a
second bus. Such a gateway can be used, for example, in a car,
where  it  separates  different  networking  subsystems.  One
subsystem  can  contain  electronic  control  units  (ECUs)  that
control  the  engine,  and  the  other  subsystem  consists  of  an
infotainment  unit  and  other  non-critical  systems.  With  the
gateway, we can restrict the communication between those two
subsystems, apply custom rules for network traffic filtering, or
do  some  message  processing  to  make  the  two  CAN  buses
compatible (change message IDs, perform data manipulation,
calculate new CRC checksums).

This  latency  testing  continued  in  2014,  comparing  the
performance of multiple interfaces used to access a CAN bus
on GNU/Linux systems. To evaluate the overhead of the Linux
kernel,  an  RTEMS-based  gateway  has  been  used  as  a
reference, achieving only 15 µs latency on the same PowerPC
MPC5200-based mid-range hardware.  The x86 PC computer
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equipped with a Kavser PCI quad-CAN SJA1000-based card
has been used for traffic generation and latency measurement.

The new CTU CAN FD IP core [3] has been conceived to
extend analyzers for SkodaAuto to support CAN FD protocol
(around 2015).  The IP core is  equipped with a  64-bit  clock
counter common to all CAN FD interfaces implemented on a
given  FPGA-based  system.  Integration  to  Intel  FPGA-based
PCIe card as Intel and AMD/Xilinx ARM-based SoCs has been
developed.  The  Xilinx  Zynq-based  system  is  used  for  the
Linux  kernel  continuous  latency  evaluation  system.  The
100 MHz FPGA clock frequency corresponds to the 10 ns time
resolution of timestamps attached to the received CAN/CAN
FD frames.

II. CAN LATENCY MEASUREMENT HW SETUP

The two systems are used to evaluate gateway latency. The
system under test (DUT) has a simple role – receive messages
from CAN bus A and instantly send them to the second CAN
bus B. The other system, measuring one, generates CAN/CAN
FD frames on CAN bus A and receives frames on both buses
with precise timestamps attached. Its two controllers (can0 and
can1) are connected to internal line 1 and another one (can2) to
line 2. Line 1 is connected to bus A; line 2 is connected to bus
B.  The need  for  two controllers  on  bus  A comes  from the
measurement principle. On the device under test, one controller
is connected to internal line 1 and another to line 2. The lines
are,  in  turn,  connected  to  physical  buses  A  and  B,  which
connect both devices through a cable. The connection of the
boards is schematically depicted in Fig. 1. The two educational
kits  MZ_APO  [4]  based  on  AMD/Xilinx  Zynq  SoCs  on
MicroZed SBC board are used in our case. However, there are
minimal requirements for the device under the test, which is
two CAN/CAN FD interfaces.  Even a system with a single
CAN interface can be evaluated with a modified test procedure
when  a  message  is  replied  to/echoed  by  a  message  with  a
different  CAN ID.  The  measuring  device  utilizes  advanced
CTU CAN FD IP core timestamping, but another system with
multiple CAN channels and hardware timestamping can also
be used.

The  operation  of  both  devices  needs  to  be  coordinated
during  measurement,  and  the  results  need  to  be  stored  and
processed.  An  external  server  running  in  the  CTU  FEE
virtualization farm is connected to the devices via Ethernet and
provides a root filesystem over NFS for both systems. It also
controls  booting  and  actual  measurements  over  SSH.  The
advantage of using an additional server rather than doing these
tasks from the measuring device is that a server has way more
CPU power and larger storage, which is useful when building
new versions of the Linux kernel. The NFS exported device
root filesystem is updated to include matching kernel modules
and the kernel and bitstream ITS image server over TFTP after
each kernel build. 

The measuring device and the device under test (DUT) are
stressed by the measurement, which can lead to crashes and
freezes when some problem is uncovered. In order to recover
from such a situation automatically, it is helpful to have a serial
(over USB) connection to the boards. It allows both low-level
and panic kernel messages to be captured and the MZ_APO
boards to be reset remotely. The MZ_APO kit USB to serial
console circuitry monitors break condition, and when active for
longer than 2 seconds, it activates the Zynq hard reset signal.
The server,  however, can be in a different location than the
boards,  making direct  connection impractical.  That has been
solved  by  adding  another  testbed  control  device  (TB)  –  a
combination  of  the  ARM64  OrangePi  Zero  Plus  board
equipped  with  an  expansion  board  designed  by  Ing.  Petr
Porazil  of  PiKRON.com.  Besides  a  USB hub for  providing
serial  consoles  to  the  MZ_APO  boards,  it  includes  power
switches  that  allow  the  power  of  two  other  boards  to  be
switched on or off remotely. It also means that a single power
supply can power all three devices. The TB is connected to the
same Ethernet LAN as the other devices.

III. LATENCY MEASUREMENT SOFTWARE

The measurement itself is  carried out by the can-latester
software [5]. The device under test can be used in either regular
gateway  mode  (retransmit  on  a  different  bus)  or  single
interface mode. The single interface mode allows testing the
CAN frame processing latencies of systems equipped with only
one CAN interface, like the ESP32C3 MCU. In this case, the
DUT retransmits each frame onto the same bus,  just with a
higher priority/CAN ID.

In gateway mode, the measurement system sends a CAN
frame on bus A from its first CAN interface (can0). The frame
is then received by can1 on the same device, as well as by the

Figure 1: Latency tester HW setup

Figure 2: CAN message latency after retransmissions by gateway



second (DUT) device, which is set up to operate as a gateway.
The  gateway  forwards  the  frame  onto  bus  B,  where  it  is
received by the can2 interface of the first device. The time it
takes  to  forward  the  frame  is  influenced  by  the  operating
system's task scheduling and is the main source of variance in
measured  latencies.  The  measuring  device  subtracts  the
hardware-captured  timestamps  recorded  at  the  start  of  the
frame reception by can1 and can2 interfaces and computes the
latency as shown in Fig.  2.  Using the timestamp from can1
ensures we know the exact time when the frame appears on
DUT's  incoming  bus.  The  computed  latency  is  stored  in  a
histogram structure – an array of bins (for every 0.001 ms up to
5000 ms) containing the number of frames whose latency falls
into each bin. After a set number of frames sent and received
(typically 10,000), the histogram of measured latencies is saved
in a text file for later processing.

It  is  possible  to  send  the  frames  in  multiple  modes.
Periodically (with a fixed interval), one at a time (wait for the
previous to return), or as fast as possible (flood mode). The
automated tests can be performed in any mode.

Single interface DUT is not suitable for use in flood mode
since it has to wait for the medium to become available (end of
the current frame), which slightly affects the latency. On the
other hand, the measuring device cannot send a frame while the
DUT is transmitting, meaning that the DUT cannot be fully
saturated,  and the  results  are  not  representative  of  what  the
performance would be under full load. 

The timestamps returned by the  two receiving interfaces
(can1  and  can2)  on  the  measuring  device  might  not  be
consistent with one another because the two controllers do not
start  their  time  counters  at  the  same  time.  Therefore,
synchronization  of  timestamps  is  performed  before  the
measurement. All interfaces are temporarily connected by the
CAN crossbar switch when a single synchronization frame is
sent, and received frame timestamps are used as a reference
base for measurement. This step is unnecessary for CTU CAN
FD  IP  core  with  a  single  hardware  time  counter  for  all
interfaces, but it is still performed to ensure portability to other
interfaces with timestamping. The frame is received by can1
and  can2  at  exactly  the  same  time,  so  the  difference  in
timestamps can be used to correct future measurements. More
detailed documentation can be found in [6].

IV. LATENCY TESTING AUTOMATION

The  test  system  is  orchestrated  by  automation  scripts
written  in  Python  language.  The  top-level  one  is  called
run_daily_tests.py and is run daily by the cron daemon. The
top-level script calls multiple utility ones. The build_linux.py is
called to build a Linux kernel for each test run.

The latest Linux kernel  versions from specified branches
pulled from the kernel.org repository are built. Currently, two
variants are built; one version is the latest state of the master
branch,  and  the  second  is  the  current  development  version,
which  includes  PREEMPT_RT real-time  modifications.  The
DUT then boots each kernel build and runs a CAN gateway.
The measuring device runs tests on the gateway by generating
CAN traffic and measuring the latency of the gateway under
various  conditions.  The  server  collects  and  processes  these

results for presentation on the project web pages. The scripts
that  handle the automation and the website  source code are
available from the project GIT repository [7].

The U-boot ITS image is built from the DUT kernel and
programmable  logic  bitstream  and  copied  to  the  directory
accessible from the boards over TFTP  protocol. The boot is
controlled  by  a  small  script/sequence  of  U-boot  commands,
which  is  loaded  using  the  TFTP  protocol.  The  DUT  and
measurement  boards  are  distinguished  from  the  script  by
comparison  of  the  Ethernet  address  of  the  device.  The
measurement device loads a stable/known to work well kernel.
Its  CTU  CAN  FD  driver  is  patched  by  a  hardware
timestamping  support  patch,  which  has  not  yet  reached  the
mainline.

The  test  system  resets  the  boards  over  TB  serial  line
connections  and  waits  till  both  systems  respond  to  the  test
attempt to connect the SSH port. The board root filesystem is
based  on  the  Debian  Linux  distribution,  but  they  initialize
through  the  init-overlay  script  [8],  which  maps  the  overlay
filesystem with tmpfs layered over base NFS read-only export.
This way, no changes or damage can propagate to the exported
root filesystem, and multiple devices can boot from the same
export.

Initialization needs to happen before testing can begin. The
FPGA needs to be programmed with the correct design, the
CAN crossbar switch needs to be configured on each device,
and the CAN interfaces need to be brought up and have their
txqueuelen increased (to prevent ENOBUF errors, which the
latester  and  ugw  -  user  mode  gateway,  do  not  handle).
Additionally,  the  irq  threads  of  the  measuring  device's
receiving CAN interfaces must be given higher priority than
the transmitting interface. Otherwise, the system sometimes did
not  read  out  frames  quickly  enough,  leading  to  buffer
overflows. All these steps are automated in a script called init-
device.sh,  which is  included in the  repository.  The script  is
registered as a systemd unit and runs as part of the boot process
once  the  multi-user.target  is  reached.  The  systemd  unit  is
located at /etc/systemd/system/init-device.service.

Configuring the FPGA design uses the synthesized FPGA
design (firmware) and a device tree overlay file (DTBO) that
describes the devices in the design to the operating system. The
design file is copied under /lib/firmware/ directory. The device
tree overlay file is compiled into a device tree overlay (DTBO)
using the DTC tool (part of the Linux kernel repository). The
DTBO is then loaded using the  dtbocfg kernel  module.  The
module first needs to be loaded (modprobe dtbocfg), and then a
directory  under  /sys/kernel/config/device-tree/overlays is
created,  for  example,  my-overlay.  The  DTBO file  is  copied
inside  this  new  directory  under  dtbo  name,  and  overlay  is
activated by writing "1" into a status file in the same directory.
The correct firmware is automatically loaded into the FPGA as
specified in the device tree fragment  (e.g.  firmware-name =
"system.bit.bin";).

 When devices boot, the  run_test.py script is executed for
each selected configuration. It prepares the DUT as specified
by the configuration, runs latester, and fetches the results. The
downloaded  histogram  file  is  converted  to  JSON  using
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hist_to_json.py script.  When  all  configurations  for  different
loads,  priority,  and gateway implementation are  tested,  then
process_json_dir.py finally  takes  all  the  JSON files  of  past
individual  tests,  groups  them by  the  test  configuration,  and
merges them into one large file per group. These large files are
then  served  together  with  the  website.  Most  of  these  utility
scripts can also be run independently from the command line,
although the main script imports them as modules and calls
their functions. The option to run scripts manually was helpful
during development when some phases of the testing failed.

An  additional  script  called  build_web.py needs  to  be
executed manually only when some configuration changes.

All scripts use the conf.json config file, which is by default
located  at  /var/lib/latester/conf.json.  The  file  is  used  to
parametrize  some  parts  of  the  process.  For  example,  the
directories where results are stored, where the website root is
located, IP addresses of the devices doing the testing, which
commands to run in certain situations, and more.

The test configuration is determined by a set of options that
can be turned on or off. When testing a kernel from the master
branch, the next options that are set on and off are flood (send
CAN messages as fast as possible)  kern (kernel  gateway is
used  instead  of  user  mode  one),  stress (stress  CPU  and
memory of the dut system), and  fd (CAN FD messages are
used).  When testing an RT kernel,  there  is  an additional  rt
option to elevate CAN IRQ thread priorities that does not apply
to master. These options are passed in a list as the parameters
or on the command line.

V. WEB PRESENTATION

The web interface was designed to be a statically hosted
site. All pages are generated and updated daily beforehand and
can  be  served  directly  by  a  server  like  Apache  or  NGINX
without processing on the server side. Dynamic elements are
implemented on the client side in JavaScript.

The main benefits of the website being static are simplicity,
greater loading speed, and better security, thanks to a smaller
attack surface on the server. The downside is the need to load a
whole series of measured data for processing on the client side.
However,  latency  trend  visualization  for  consecutive
development  kernel  versions  is  a  typical  use  case  for
monitoring,  and  the  ability  to  analyze  individual  latency
profiles  would  required  to  load  data  on  the  request  later
anyway.  On  the  typical  contemporary  network,  loading  a
whole year of data series is fast enough, so a more complex
server-side would not be justified.

The plots are drawn using a JavaScript library called plotly.
It  is  a  feature-rich  and  easy-to-use  graphing  library  with  a
comprehensive  offer  of  plot  types.  Its  use  for  data  series
representation  requires  little  code  and  provides  a  polished
interactive graph rendered as an SVG object inside HTML. 3D
graphs are drawn using WebGL. The graph can be panned,
zoomed  in,  or  hovered  with  a  mouse  to  display  data  point
values  in  a  tooltip  [9].  It  is  a  bit  heavy  at  3.4  MB  of
uncompressed minified JavaScript, although fortunately, there
is  an  option  to  create  a  custom  version,  see
https://github.com/plotly/plotly.js/blob/master/CUSTOM_BUN

DLE.md.  That includes only the required chart types,  which
shrinks the size to about 1.5 MB. That might still be a little
more  than  optimal,  but  the  time  saved  by  not  having  to
replicate  the  same  functionality  and  polish  with  less
sophisticated  tools  seems  to  have  been  worth  it.  Further
removal of the surface chart type could have reduced the size
to under 1 MB.

An  alternative  could  have  been  generating  static  SVGs
beforehand  with  matplotlib.  The  obvious  downside  is  the
absence  of  interactive  features  (or  the  need  for  some
complicated  workarounds),  and  therefore,  some  abnormal
histograms  spanning  a  broad  range  of  latencies  would  be
hardly  readable  without  the  ability  to  zoom in.  The  closest
library with a similar interactive features set is probably vis.js,
which has  the  benefit  of  being modularized by default,  and
Apexcharts.  Many  other  plotting  libraries  either  lack  some
useful chart types (like heatmap) or are proprietary.

Plotly can be  used  in  a  website  simply  by  including  its
script in the page's head tag. The page must also contain a div
tag  that  should  host  the  chart.  The  chart  is  then  drawn  by
calling  Plotly.react(div_id, data, layout); from JavaScript and
passing  it  the  id  of  the  div,  the  data and  layout objects,
constructed  according  to  the  documentation  to  display  the
loaded  data  and  configure  desired  functionality.  Plotly also
supports adding event listeners to allow the implementation of
custom interactive features.

The single histogram result files typically represent 500 B
to 5 KiB, with the average for the RT branch after running for
two months being 1979 B. These are not served individually;
instead,  the merged files  that  contain the whole series  have
slightly  lower  overhead  (JSON  object  keys).  It  has  been
expected  that  even  if  the  histograms  in  the  series  are
concatenated, that would make about 705  KiB for each test
series after a year of testing—the actual results after little more
than one year of daily operation range from 200 kB for smooth
series of unload system to 11 MB for actually misbehaving RT
kernel under full load conditions. Whole Web presentation data
are compressed to about 5 MB after year for the daily run. The
archive of this size is transferred to GitLab pages for the final
presentation. With today's internet speeds, this amount of data
with a maximal series of about 10 MB is acceptable.

VI. THE OBSERVED RESULTS AFTER YEAR OF OPERATION

The system was prepared during the last quarter of 2022,
and  after  some  experimental  rounds,  it  was  set  up  for
continuous operation at the start of April 2023. The gateway
process's  priority  and latencies'  measurement  under  the load
(stress --cpu 2 --vm 2 and ping flood on the DUT) has been
adjusted, and the system runs under constant conditions from
25  April  2023.  Typical  latencies  for  the  unloaded  mainline
Linux kernel are in a range of 0.1 ms. The maximal latencies
measured on loaded mainline kernel are usually around 1 ms
for in kernel CAN gateway and around 3 ms when CAN frame
retransmission  is  realized  by  the  user  space  program (ugw)
even that RT priority (SCHED_RR 80) is set for the program.
However,  such behavior  is  expected for the mainline kernel
with  non-preemptible  kernel  sections,  huge  networking
interrupts,  and  packet  processing  in  the  kernel  tasklets  and



bottom halves,  which can block CAN processing for a long
time.

The  main  aim  of  the  latency  testing  is  to  monitor  the
PREEMP_RT  Linux  kernel  variant  behavior  and  evolution.
With  more  than  ten  years  of  experience  with  running  and
tuning real-time enabled Linux kernel  on many ARM-based
systems, our expectation is that about 0.2 ms (4 kHz with safe
margin) is a realistic expectation for the timing of control loops
where no sampling period is skipped on 32-bit ARM systems.
We have used Zynq-based systems for motion control tasks,
including  complex  PMSM  servo  systems  control.  The
cyclictest -m -Sp99 -i200 -h400 confirms our expectations even
on the latest PREEMP_RT Linux kernels.  The Linux kernel
networking stack is known to be problematic from a real-time
point of view. It uses the bottom halves-based processing and
mixes  short  CAN/CAN  FD  packets  with  complex  TCP/IP
traffic.  However,  many  projects  rely  on  SocketCAN  as  a
subsystem used in closed control loops, so knowledge of its
behavior and some statistical long-term assessment should be
considered before such use.

We can observe that unloaded PREEMP_RT Linux kernels
can keep the maximal latency around 0.2 ms. There are some
glitches up to 0.45 ms and some samples that could be caused

by  some  problems  connected  to  RT  patches  evolution  and
integration during kernel  updates.  The continuous testing on
Zynq systems allows us  to  report  some critical  errors  early,
which slip into PREMP_RT kernel  development.  It  was the
case of breakage of VFP support for the whole ARM 32-bit
family in 6.3 development cycle. The report has been quickly
resolved by the PREEMP_RT development team (ARM: vfp:
Fixes for PREEMP_RT patch by Ard Biesheuvel and Sebastian
Andrzej Siewior).

We observe a significant statistical increase in the latencies
of the PREEMP_RT, which corresponds to the update from the
6.7.0-rt6 to the 6.8.0-rc1-rt1 version. If the situation does not
improve by the start of the 6.9 series, we plan to investigate
further the cause and consult  the state with the expert  team
working on PREEMP_RT development and integration into the
mainline.

VII. CONCLUSION

The system for monitoring CAN communication latencies
in the Linux kernel has been designed and automated to the
level that it already served for a year. The measuring system is
based on the CTU's own CAN controller design with precise
timestamping, but latency testing automation is implemented as
portable even to other controllers with hardware timestamping.
At least three independent CAN interfaces with some circuitry,
which  allow the  connecting  of  all  buses  together  for  initial
timestamp hardware offset calibration, are ideal for the Linux-
supported measurement system. The system can be used for
latency assessment of almost arbitrary devices under the test
(DUT),  primarily  focusing  on  Linux-based  systems  with  at
least two CAN/CAN FD interfaces. However, the use of our
latency  tester  system has  been  demonstrated  even  on  small
Espressif ESP32C3 systems running the NuttX system, which
has only a single CAN interface supported by the NuttX driver
from  our  other  development  project.  We  are  preparing  a
completely  new  CAN/CAN  FD  subsystem for  the  RTEMS
operating system used by ESA and NASA, and we plan to add
this stack assessment to our list of daily rounds as well. Our
preliminary results are very promising, with latencies under 0.1
ms  under  the  load  on  the  same  hardware.  Our  driver
infrastructure allows ideal utilization of a limited number of
hardware Tx buffers for multiple messages priority classes with
a mechanism to keep FIFO order for a given communication
stream yet preventing a link-level messages arbitration priority
inversion case. The CAN subsystem for RTEMS design article
will be published at the International CAN Conference 2024
[10].

We believe that each serious industrial or carmaker user of
the Linux kernel-based systems who use it with CAN/CAN FD
communication for more than pure traffic recording for offline
use should care and have at least statistical data for in-system
latencies. Our setup is fully documented and available from the
CTU CAN GitLab project.  We have negotiated cooperation
with Open Source Automation Development Lab (OSADL) eG
in  the  area  of  monitoring  CAN latencies  and  their  hunting.
There are more ongoing related projects run by members of the
informal  CTU  Open  Technologies  Research  Education  and
Exchange Services group [11] [12].
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Figure 3: CAN latency tester overview page

Figure 4: CAN Latency tester histograms for individual daily tests
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