
Continuous CAN Bus Subsystem Latency Evaluation
and Stress Testing on GNU/Linux-Based Systems

Pavel Píša, Pavel Hronek, Matěj Vasilevski
Department of Control Engineering, FEE

Czech Technical University in Prague
Prague, Czech Republic

pisa@felk.cvut.cz, hronepa1@fel.cvut.cz,
matej.vasilevski@gmail.com

Jiří Novák
Department of Measurement, FEE

Czech Technical University in Prague
Prague, Czech Republic

jnovak@fel.cvut.cz

Abstract—The control of vehicles, industrial, and or motion
systems requires complex controllers with defined response
times. Many high-level control systems utilize complete POSIX-
based operating systems capable of processing data from
cameras, LIDARs, and other sensors by running complex
machine-learning algorithms. The fully preemptive variant of the
kernel with long-term testing, as proceeded by example on
OSADL Quality Assurance Real-Time Farm, provides enough
guarantee for the timing of the control algorithms running on the
single system. However, the ability to deliver commands in time
to other components is limited by latencies caused by
communication hardware and related operating system drivers.
CAN and CAN FD are often used for this communication. Long-
term evaluation of latencies caused by system load, driver
implementation, and other factors is critical to assess system
reliability. Monitoring and checking the evolution of latencies in
the mainline Linux kernel source tree allows for resolving
problems before they propagate to production system updates.
The daily evaluation is the service of our continuous CAN/CAN
FD latency testing system. CTU CAN FD IP core is used for
precise timestamping on the generator side. At the time of the
conference, we present data from daily testing of multiple kernel
configurations running more than one year already. All
developed components are available in the source form and can
be reused by carmakers and other CAN bus users.

Keywords—Linux; kernel; CAN bus; CAN FD; latency; drivers

I. INTRODUCTION
The Czech Technical University in Prague team has

supported companies in industrial and automotive
communications for over 30 years. The CAN communication
boards with a coprocessor for CAN open communication were
designed in the nineties. Later, many generations of CAN and
CAN FD bus and automotive ETHERNET analyzers, error
injection systems, and other tools for carmakers such as
SkodaAuto, Porsche, and Volkswagen have been delivered.
CAN and CAN FD IP cores and other FPGA solutions have
been designed for general and special purposes. As for the

software side, CAN/CAN FD drivers for own and generally
available hardware have been developed for Linux kernel,
NuttX, RTEMS, and Windows operating systems. The
LinCAN character driver-based framework [1] predates later
widely adapted Linux SockteCAN [2] by multiple years. When
SocketCAN gained momentum, bit-timing support, and some
drivers were provided to the SocketCAN mainline.

The analysis and evaluation of communication and
response latencies for control systems have been taken as the
critical part of the provided support and projects, and the tool
to evaluate CTU's LinCAN has been designed in parallel with
the subsystem and extended later to support even SocketCAN.
Then, in 2011, Volkswagen Group Research worked on an in-
kernel Linux-based CAN gateway. Because previous work
started by Pavel Pisa has been well known in the community,
the Department of Control Engineering CTU FEE has been
contracted to provide a system for evaluating the latencies of
the CAN gateway. The experiments measured the latency of
the gateway, the time spent between receiving a CAN message
on one bus, processing it, and transmitting the message on a
second bus. Such a gateway can be used, for example, in a car,
where it separates different networking subsystems. One
subsystem can contain electronic control units (ECUs) that
control the engine, and the other subsystem consists of an
infotainment unit and other non-critical systems. With the
gateway, we can restrict the communication between those two
subsystems, apply custom rules for network traffic filtering, or
do some message processing to make the two CAN buses
compatible (change message IDs, perform data manipulation,
calculate new CRC checksums).

This latency testing continued in 2014, comparing the
performance of multiple interfaces used to access a CAN bus
on GNU/Linux systems. To evaluate the overhead of the Linux
kernel, an RTEMS-based gateway has been used as a
reference, achieving only 15 µs latency on the same PowerPC
MPC5200-based mid-range hardware. The x86 PC computer

www.embedded-world.eu

equipped with a Kavser PCI quad-CAN SJA1000-based card
has been used for traffic generation and latency measurement.

The new CTU CAN FD IP core [3] has been conceived to
extend analyzers for SkodaAuto to support CAN FD protocol
(around 2015). The IP core is equipped with a 64-bit clock
counter common to all CAN FD interfaces implemented on a
given FPGA-based system. Integration to Intel FPGA-based
PCIe card as Intel and AMD/Xilinx ARM-based SoCs has been
developed. The Xilinx Zynq-based system is used for the
Linux kernel continuous latency evaluation system. The
100 MHz FPGA clock frequency corresponds to the 10 ns time
resolution of timestamps attached to the received CAN/CAN
FD frames.

II. CAN LATENCY MEASUREMENT HW SETUP

The two systems are used to evaluate gateway latency. The
system under test (DUT) has a simple role – receive messages
from CAN bus A and instantly send them to the second CAN
bus B. The other system, measuring one, generates CAN/CAN
FD frames on CAN bus A and receives frames on both buses
with precise timestamps attached. Its two controllers (can0 and
can1) are connected to internal line 1 and another one (can2) to
line 2. Line 1 is connected to bus A; line 2 is connected to bus
B. The need for two controllers on bus A comes from the
measurement principle. On the device under test, one controller
is connected to internal line 1 and another to line 2. The lines
are, in turn, connected to physical buses A and B, which
connect both devices through a cable. The connection of the
boards is schematically depicted in Fig. 1. The two educational
kits MZ_APO [4] based on AMD/Xilinx Zynq SoCs on
MicroZed SBC board are used in our case. However, there are
minimal requirements for the device under the test, which is
two CAN/CAN FD interfaces. Even a system with a single
CAN interface can be evaluated with a modified test procedure
when a message is replied to/echoed by a message with a
different CAN ID. The measuring device utilizes advanced
CTU CAN FD IP core timestamping, but another system with
multiple CAN channels and hardware timestamping can also
be used.

The operation of both devices needs to be coordinated
during measurement, and the results need to be stored and
processed. An external server running in the CTU FEE
virtualization farm is connected to the devices via Ethernet and
provides a root filesystem over NFS for both systems. It also
controls booting and actual measurements over SSH. The
advantage of using an additional server rather than doing these
tasks from the measuring device is that a server has way more
CPU power and larger storage, which is useful when building
new versions of the Linux kernel. The NFS exported device
root filesystem is updated to include matching kernel modules
and the kernel and bitstream ITS image server over TFTP after
each kernel build.

The measuring device and the device under test (DUT) are
stressed by the measurement, which can lead to crashes and
freezes when some problem is uncovered. In order to recover
from such a situation automatically, it is helpful to have a serial
(over USB) connection to the boards. It allows both low-level
and panic kernel messages to be captured and the MZ_APO
boards to be reset remotely. The MZ_APO kit USB to serial
console circuitry monitors break condition, and when active for
longer than 2 seconds, it activates the Zynq hard reset signal.
The server, however, can be in a different location than the
boards, making direct connection impractical. That has been
solved by adding another testbed control device (TB) – a
combination of the ARM64 OrangePi Zero Plus board
equipped with an expansion board designed by Ing. Petr
Porazil of PiKRON.com. Besides a USB hub for providing
serial consoles to the MZ_APO boards, it includes power
switches that allow the power of two other boards to be
switched on or off remotely. It also means that a single power
supply can power all three devices. The TB is connected to the
same Ethernet LAN as the other devices.

III. LATENCY MEASUREMENT SOFTWARE

The measurement itself is carried out by the can-latester
software [5]. The device under test can be used in either regular
gateway mode (retransmit on a different bus) or single
interface mode. The single interface mode allows testing the
CAN frame processing latencies of systems equipped with only
one CAN interface, like the ESP32C3 MCU. In this case, the
DUT retransmits each frame onto the same bus, just with a
higher priority/CAN ID.

In gateway mode, the measurement system sends a CAN
frame on bus A from its first CAN interface (can0). The frame
is then received by can1 on the same device, as well as by the

Figure 1: Latency tester HW setup

Figure 2: CAN message latency after retransmissions by gateway

second (DUT) device, which is set up to operate as a gateway.
The gateway forwards the frame onto bus B, where it is
received by the can2 interface of the first device. The time it
takes to forward the frame is influenced by the operating
system's task scheduling and is the main source of variance in
measured latencies. The measuring device subtracts the
hardware-captured timestamps recorded at the start of the
frame reception by can1 and can2 interfaces and computes the
latency as shown in Fig. 2. Using the timestamp from can1
ensures we know the exact time when the frame appears on
DUT's incoming bus. The computed latency is stored in a
histogram structure – an array of bins (for every 0.001 ms up to
5000 ms) containing the number of frames whose latency falls
into each bin. After a set number of frames sent and received
(typically 10,000), the histogram of measured latencies is saved
in a text file for later processing.

It is possible to send the frames in multiple modes.
Periodically (with a fixed interval), one at a time (wait for the
previous to return), or as fast as possible (flood mode). The
automated tests can be performed in any mode.

Single interface DUT is not suitable for use in flood mode
since it has to wait for the medium to become available (end of
the current frame), which slightly affects the latency. On the
other hand, the measuring device cannot send a frame while the
DUT is transmitting, meaning that the DUT cannot be fully
saturated, and the results are not representative of what the
performance would be under full load.

The timestamps returned by the two receiving interfaces
(can1 and can2) on the measuring device might not be
consistent with one another because the two controllers do not
start their time counters at the same time. Therefore,
synchronization of timestamps is performed before the
measurement. All interfaces are temporarily connected by the
CAN crossbar switch when a single synchronization frame is
sent, and received frame timestamps are used as a reference
base for measurement. This step is unnecessary for CTU CAN
FD IP core with a single hardware time counter for all
interfaces, but it is still performed to ensure portability to other
interfaces with timestamping. The frame is received by can1
and can2 at exactly the same time, so the difference in
timestamps can be used to correct future measurements. More
detailed documentation can be found in [6].

IV. LATENCY TESTING AUTOMATION

The test system is orchestrated by automation scripts
written in Python language. The top-level one is called
run_daily_tests.py and is run daily by the cron daemon. The
top-level script calls multiple utility ones. The build_linux.py is
called to build a Linux kernel for each test run.

The latest Linux kernel versions from specified branches
pulled from the kernel.org repository are built. Currently, two
variants are built; one version is the latest state of the master
branch, and the second is the current development version,
which includes PREEMPT_RT real-time modifications. The
DUT then boots each kernel build and runs a CAN gateway.
The measuring device runs tests on the gateway by generating
CAN traffic and measuring the latency of the gateway under
various conditions. The server collects and processes these

results for presentation on the project web pages. The scripts
that handle the automation and the website source code are
available from the project GIT repository [7].

The U-boot ITS image is built from the DUT kernel and
programmable logic bitstream and copied to the directory
accessible from the boards over TFTP protocol. The boot is
controlled by a small script/sequence of U-boot commands,
which is loaded using the TFTP protocol. The DUT and
measurement boards are distinguished from the script by
comparison of the Ethernet address of the device. The
measurement device loads a stable/known to work well kernel.
Its CTU CAN FD driver is patched by a hardware
timestamping support patch, which has not yet reached the
mainline.

The test system resets the boards over TB serial line
connections and waits till both systems respond to the test
attempt to connect the SSH port. The board root filesystem is
based on the Debian Linux distribution, but they initialize
through the init-overlay script [8], which maps the overlay
filesystem with tmpfs layered over base NFS read-only export.
This way, no changes or damage can propagate to the exported
root filesystem, and multiple devices can boot from the same
export.

Initialization needs to happen before testing can begin. The
FPGA needs to be programmed with the correct design, the
CAN crossbar switch needs to be configured on each device,
and the CAN interfaces need to be brought up and have their
txqueuelen increased (to prevent ENOBUF errors, which the
latester and ugw - user mode gateway, do not handle).
Additionally, the irq threads of the measuring device's
receiving CAN interfaces must be given higher priority than
the transmitting interface. Otherwise, the system sometimes did
not read out frames quickly enough, leading to buffer
overflows. All these steps are automated in a script called init-
device.sh, which is included in the repository. The script is
registered as a systemd unit and runs as part of the boot process
once the multi-user.target is reached. The systemd unit is
located at /etc/systemd/system/init-device.service.

Configuring the FPGA design uses the synthesized FPGA
design (firmware) and a device tree overlay file (DTBO) that
describes the devices in the design to the operating system. The
design file is copied under /lib/firmware/ directory. The device
tree overlay file is compiled into a device tree overlay (DTBO)
using the DTC tool (part of the Linux kernel repository). The
DTBO is then loaded using the dtbocfg kernel module. The
module first needs to be loaded (modprobe dtbocfg), and then a
directory under /sys/kernel/config/device-tree/overlays is
created, for example, my-overlay. The DTBO file is copied
inside this new directory under dtbo name, and overlay is
activated by writing "1" into a status file in the same directory.
The correct firmware is automatically loaded into the FPGA as
specified in the device tree fragment (e.g. firmware-name =
"system.bit.bin";).

 When devices boot, the run_test.py script is executed for
each selected configuration. It prepares the DUT as specified
by the configuration, runs latester, and fetches the results. The
downloaded histogram file is converted to JSON using

www.embedded-world.eu

hist_to_json.py script. When all configurations for different
loads, priority, and gateway implementation are tested, then
process_json_dir.py finally takes all the JSON files of past
individual tests, groups them by the test configuration, and
merges them into one large file per group. These large files are
then served together with the website. Most of these utility
scripts can also be run independently from the command line,
although the main script imports them as modules and calls
their functions. The option to run scripts manually was helpful
during development when some phases of the testing failed.

An additional script called build_web.py needs to be
executed manually only when some configuration changes.

All scripts use the conf.json config file, which is by default
located at /var/lib/latester/conf.json. The file is used to
parametrize some parts of the process. For example, the
directories where results are stored, where the website root is
located, IP addresses of the devices doing the testing, which
commands to run in certain situations, and more.

The test configuration is determined by a set of options that
can be turned on or off. When testing a kernel from the master
branch, the next options that are set on and off are flood (send
CAN messages as fast as possible) kern (kernel gateway is
used instead of user mode one), stress (stress CPU and
memory of the dut system), and fd (CAN FD messages are
used). When testing an RT kernel, there is an additional rt
option to elevate CAN IRQ thread priorities that does not apply
to master. These options are passed in a list as the parameters
or on the command line.

V. WEB PRESENTATION

The web interface was designed to be a statically hosted
site. All pages are generated and updated daily beforehand and
can be served directly by a server like Apache or NGINX
without processing on the server side. Dynamic elements are
implemented on the client side in JavaScript.

The main benefits of the website being static are simplicity,
greater loading speed, and better security, thanks to a smaller
attack surface on the server. The downside is the need to load a
whole series of measured data for processing on the client side.
However, latency trend visualization for consecutive
development kernel versions is a typical use case for
monitoring, and the ability to analyze individual latency
profiles would required to load data on the request later
anyway. On the typical contemporary network, loading a
whole year of data series is fast enough, so a more complex
server-side would not be justified.

The plots are drawn using a JavaScript library called plotly.
It is a feature-rich and easy-to-use graphing library with a
comprehensive offer of plot types. Its use for data series
representation requires little code and provides a polished
interactive graph rendered as an SVG object inside HTML. 3D
graphs are drawn using WebGL. The graph can be panned,
zoomed in, or hovered with a mouse to display data point
values in a tooltip [9]. It is a bit heavy at 3.4 MB of
uncompressed minified JavaScript, although fortunately, there
is an option to create a custom version, see
https://github.com/plotly/plotly.js/blob/master/CUSTOM_BUN

DLE.md. That includes only the required chart types, which
shrinks the size to about 1.5 MB. That might still be a little
more than optimal, but the time saved by not having to
replicate the same functionality and polish with less
sophisticated tools seems to have been worth it. Further
removal of the surface chart type could have reduced the size
to under 1 MB.

An alternative could have been generating static SVGs
beforehand with matplotlib. The obvious downside is the
absence of interactive features (or the need for some
complicated workarounds), and therefore, some abnormal
histograms spanning a broad range of latencies would be
hardly readable without the ability to zoom in. The closest
library with a similar interactive features set is probably vis.js,
which has the benefit of being modularized by default, and
Apexcharts. Many other plotting libraries either lack some
useful chart types (like heatmap) or are proprietary.

Plotly can be used in a website simply by including its
script in the page's head tag. The page must also contain a div
tag that should host the chart. The chart is then drawn by
calling Plotly.react(div_id, data, layout); from JavaScript and
passing it the id of the div, the data and layout objects,
constructed according to the documentation to display the
loaded data and configure desired functionality. Plotly also
supports adding event listeners to allow the implementation of
custom interactive features.

The single histogram result files typically represent 500 B
to 5 KiB, with the average for the RT branch after running for
two months being 1979 B. These are not served individually;
instead, the merged files that contain the whole series have
slightly lower overhead (JSON object keys). It has been
expected that even if the histograms in the series are
concatenated, that would make about 705 KiB for each test
series after a year of testing—the actual results after little more
than one year of daily operation range from 200 kB for smooth
series of unload system to 11 MB for actually misbehaving RT
kernel under full load conditions. Whole Web presentation data
are compressed to about 5 MB after year for the daily run. The
archive of this size is transferred to GitLab pages for the final
presentation. With today's internet speeds, this amount of data
with a maximal series of about 10 MB is acceptable.

VI. THE OBSERVED RESULTS AFTER YEAR OF OPERATION

The system was prepared during the last quarter of 2022,
and after some experimental rounds, it was set up for
continuous operation at the start of April 2023. The gateway
process's priority and latencies' measurement under the load
(stress --cpu 2 --vm 2 and ping flood on the DUT) has been
adjusted, and the system runs under constant conditions from
25 April 2023. Typical latencies for the unloaded mainline
Linux kernel are in a range of 0.1 ms. The maximal latencies
measured on loaded mainline kernel are usually around 1 ms
for in kernel CAN gateway and around 3 ms when CAN frame
retransmission is realized by the user space program (ugw)
even that RT priority (SCHED_RR 80) is set for the program.
However, such behavior is expected for the mainline kernel
with non-preemptible kernel sections, huge networking
interrupts, and packet processing in the kernel tasklets and

bottom halves, which can block CAN processing for a long
time.

The main aim of the latency testing is to monitor the
PREEMP_RT Linux kernel variant behavior and evolution.
With more than ten years of experience with running and
tuning real-time enabled Linux kernel on many ARM-based
systems, our expectation is that about 0.2 ms (4 kHz with safe
margin) is a realistic expectation for the timing of control loops
where no sampling period is skipped on 32-bit ARM systems.
We have used Zynq-based systems for motion control tasks,
including complex PMSM servo systems control. The
cyclictest -m -Sp99 -i200 -h400 confirms our expectations even
on the latest PREEMP_RT Linux kernels. The Linux kernel
networking stack is known to be problematic from a real-time
point of view. It uses the bottom halves-based processing and
mixes short CAN/CAN FD packets with complex TCP/IP
traffic. However, many projects rely on SocketCAN as a
subsystem used in closed control loops, so knowledge of its
behavior and some statistical long-term assessment should be
considered before such use.

We can observe that unloaded PREEMP_RT Linux kernels
can keep the maximal latency around 0.2 ms. There are some
glitches up to 0.45 ms and some samples that could be caused

by some problems connected to RT patches evolution and
integration during kernel updates. The continuous testing on
Zynq systems allows us to report some critical errors early,
which slip into PREMP_RT kernel development. It was the
case of breakage of VFP support for the whole ARM 32-bit
family in 6.3 development cycle. The report has been quickly
resolved by the PREEMP_RT development team (ARM: vfp:
Fixes for PREEMP_RT patch by Ard Biesheuvel and Sebastian
Andrzej Siewior).

We observe a significant statistical increase in the latencies
of the PREEMP_RT, which corresponds to the update from the
6.7.0-rt6 to the 6.8.0-rc1-rt1 version. If the situation does not
improve by the start of the 6.9 series, we plan to investigate
further the cause and consult the state with the expert team
working on PREEMP_RT development and integration into the
mainline.

VII. CONCLUSION

The system for monitoring CAN communication latencies
in the Linux kernel has been designed and automated to the
level that it already served for a year. The measuring system is
based on the CTU's own CAN controller design with precise
timestamping, but latency testing automation is implemented as
portable even to other controllers with hardware timestamping.
At least three independent CAN interfaces with some circuitry,
which allow the connecting of all buses together for initial
timestamp hardware offset calibration, are ideal for the Linux-
supported measurement system. The system can be used for
latency assessment of almost arbitrary devices under the test
(DUT), primarily focusing on Linux-based systems with at
least two CAN/CAN FD interfaces. However, the use of our
latency tester system has been demonstrated even on small
Espressif ESP32C3 systems running the NuttX system, which
has only a single CAN interface supported by the NuttX driver
from our other development project. We are preparing a
completely new CAN/CAN FD subsystem for the RTEMS
operating system used by ESA and NASA, and we plan to add
this stack assessment to our list of daily rounds as well. Our
preliminary results are very promising, with latencies under 0.1
ms under the load on the same hardware. Our driver
infrastructure allows ideal utilization of a limited number of
hardware Tx buffers for multiple messages priority classes with
a mechanism to keep FIFO order for a given communication
stream yet preventing a link-level messages arbitration priority
inversion case. The CAN subsystem for RTEMS design article
will be published at the International CAN Conference 2024
[10].

We believe that each serious industrial or carmaker user of
the Linux kernel-based systems who use it with CAN/CAN FD
communication for more than pure traffic recording for offline
use should care and have at least statistical data for in-system
latencies. Our setup is fully documented and available from the
CTU CAN GitLab project. We have negotiated cooperation
with Open Source Automation Development Lab (OSADL) eG
in the area of monitoring CAN latencies and their hunting.
There are more ongoing related projects run by members of the
informal CTU Open Technologies Research Education and
Exchange Services group [11] [12].

www.embedded-world.eu

Figure 3: CAN latency tester overview page

Figure 4: CAN Latency tester histograms for individual daily tests

ACKNOWLEDGMENT
The project has been supported by part from the Josef

Bozek National Center of Competence for Surface Vehicles,
Support programme for applied research, experimental
development and innovation of Technology Agency of the
Czech Republic, ID TN01000026

REFERENCES

[1] CTU, “LinCAN driver”, OCERA Real-Time CAN (OrtCAN) project
https://ortcan.sourceforge.net/lincan/, [Online; accessed 2024-04-01].

[2] Linux Foundation, “SocketCAN – Controller Area Network”,
https://docs.kernel.org/networking/can.html, [Online; accessed 2024-04-
01]

[3] CTU, FEE, Department of Measurement, “CTU CAN FD IP Core –
Datasheet”, https://canbus.pages.fel.cvut.cz/, [Online; accessed 2024-04-
01]

[4] CTU, PiKRON.com, “Education Kit MicroZed APO”,
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/documentation/mz_apo/
start, [Online; accessed 2024-04-01]

[5] CTU, FEE, “CAN Bus Latency Tester (Benchmarking Utilities)”,
https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester/, [Online;
accessed 2024-04-01]

[6] M. Vasilevski, “CAN Bus Latency Test Automation for Continuous
Testing and Evaluation”, master's thesis, 2022, CTU, FEE,
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-
Vasilevski-Matej-vasilmat.pdf, [Online; accessed 2024-04-01]

[7] CTU, FEE, “The automation of CAN latency Quality Assurance reports
generation”, https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-
latester-automation, [Online; accessed 2024-04-01]

[8] init-overlay script from “Utilities and Configurations for Raspberry Pi
GNU/Linux”, https://github.com/ppisa/rpi-utils/, [Online; accessed
2024-04-01]

[9] Plotly, “Plotly JavaScript Open Source Graphing Library”,
https://plotly.com/javascript/, [Online; accessed 2024-04-01]

[10] M. Lenc, P. Pisa, “Scheduling of CAN frame transmission when
multiple FIFOs with assigned priorities are used in RTOS drivers”, CAN
in Automation, Germany, 2024, [in print]

[11] CTU, FEE, “CAN bus CTU FEE Projects List”,
https://canbus.pages.fel.cvut.cz/, [Online; accessed 2024-04-01]

[12] CTU, FEE, “Open Technologies Research Education and Exchange
Services Knowledge Base”,
https://gitlab.fel.cvut.cz/otrees/org/-/wikis/knowbase, [Online; accessed
2024-04-01]

[13] CTU, FEE, “CAN Latency Tester”, daily output,
https://canbus.pages.fel.cvut.cz/can-latester/, [Online; accessed 2024-04-
01]

https://canbus.pages.fel.cvut.cz/can-latester/
https://gitlab.fel.cvut.cz/otrees/org/-/wikis/knowbase
https://canbus.pages.fel.cvut.cz/
https://plotly.com/javascript/
https://github.com/ppisa/rpi-utils/
https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester-automation
https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester-automation
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://dspace.cvut.cz/bitstream/handle/10467/101450/F3-DP-2022-Vasilevski-Matej-vasilmat.pdf
https://gitlab.fel.cvut.cz/canbus/can-benchmark/can-latester/
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/documentation/mz_apo/start
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/documentation/mz_apo/start
https://canbus.pages.fel.cvut.cz/
https://docs.kernel.org/networking/can.html
https://ortcan.sourceforge.net/lincan/

	I. Introduction
	II. CAN Latency Measurement HW Setup
	III. Latency Measurement Software
	IV. Latency Testing Automation
	V. Web Presentation
	VI. The Observed Results After Year of Operation
	VII. Conclusion
	Acknowledgment
	References

