
Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Scheduling of CAN Message Transmission when
Multiple FIFOs with Assigned Priorities are Used

in RTOS Drivers

Michal Lenc Pavel Ṕı̌sa
lencmich@fel.cvut.cz pisa@fel.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

2024-05-15
international CAN Conference 2024

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Content of Presentation

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

Outline

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

...in computer science

• low priority task, correctly preempted by middle priority task,
is holding a resource required by high priority task

• this leads to high priority task incorrectly wait for middle
priority task to finish

• solved by priority inheritance
CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

...in CAN bus

• the problem may occur on CAN bus during arbitration phase
• tasks are CAN frames, locked resources are HW buffers
• one controller is flooding the bus with middle priority frames
• second is trying to send mix of low and high priority frames
• if all HW buffers are filled with low priority frames, high
priority ones will never get to arbitration phase

CAN Bus

All HW
buffers
already

filled
with

frames
with

0x700
identifier

High priority
class sending
frames with

0x20 ID

Low priority
class sending
frames with
0x700 ID

Controller flooding
the bus with

middle priority
frames with 0x500

identifier

Controller A Controller B
CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

Data
5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

next
arbitration

7
0
0

7
0
0

7
0
0

7
0
0

7
0
0

7
0
0

lost
arbitration

Controller B

Controller A

time

Data Data Data Data

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

Priority Classes

• common solution is the introduction of priority classes (usually
FIFO queues) with assigned priority

• frames are assigned to these classes according to their
identifier range

• this way high priority messages can be passed to the controller
in their own FIFO

• these classes still has to be mapped to controller’s hardware
buffers, this causes another problems

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Introduction
Mapping Priority Classes to HW Buffers

Limitations

• controllers usually allow frame transmission based on their
CAN identifiers or in the fixed order determined by the TX
buffer index

• applications/protocols may require preservation of message
order within the same priority class even if different IDs are
used

• the frames from the highest available priority class have
to be sent first and order within the class must be
preserved

• order preservation disqualifies frame transmission in identifier
order

• current drivers usually limit the transmission to one buffer per
class or even to one TX buffer at all

• this highly limits the controller’s potential

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Outline

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Introduction

• our design extends the common solution of FIFO queues for
each priority class

• dynamic redistribution of hardware transmission buffers to
these classes is added

• this process ensures the hardware buffers are assigned the
correct priority – order in which they are sent to the network

• this order is determined by both priority classes and order
within them

• the buffer with a newly inserted message has to be
inserted in the transmit sequence after all messages of
the same or higher priority class but before all messages
of a lower priority class

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

312 0Tx order array

Reuse for prio

3

7654

Tx p. 7

Tx p. 4

Tx p. 6

Tx p. 5

First to
send

24 2Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

• TX order array holds the numbers of
hardware buffers as they should be
processed.

• TX order tail array points to the tail
for a given priority class – place where
new frame should be inserted

• head for the highest priority is fixed
and heads for lower priorities are at
the exactly same position as previous
priority tails

• if new frame inserted, all frames from
lower priority classes are moved left

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

312 0Tx order array

Reuse for prio

3

7654

Tx p. 7

Tx p. 4

Tx p. 6

Tx p. 5

First to
send

24 2Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

• if no space available in hardware
buffers and message of lower priority
class (compared to pending message)
occupies the buffers, abort must take
place

• the oldest message of the lowest
priority class is aborted and scheduled
for later processing

• new frame is inserted into free buffer
and this buffer is reorganized to
correct position

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

13 2Tx order array

Reuse for prio

0

7654

First to
send

01 0Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

Tx p. 4

Tx p. 5

Tx p. 6

Tx p. 7

• low priority message assigned to buffer
0

• TX order tail for low priority class
moved to position 1

• buffer 0 is first to send with the
highest priority 7

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

02 1Tx order array

Reuse for prio

3

7654

First to
send

12 1Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

Tx p. 7

Tx p. 6

Tx p. 4

Tx p. 5

• high priority message assigned to
buffer 3

• this frame has to be inserted before
low priority one

• TX order tail for high and middle
priority class is moved to 1, low
priority class to 2

• buffer 3 now has the highest priority 7,
buffer 0 has priority 6

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

01 2Tx order array

Reuse for prio

3

7654

First to
send

13 1Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

Tx p. 7

Tx p. 6

Tx p. 5

Tx p. 4

• low priority message assigned to buffer
2

• this frame has to be inserted after all
high and middle priority frames and
after all previously added low priority
frames

• TX order tail for high and middle
priority class remains at 1, low priority
class is to 2 as new frame is added

• priorities for buffers 2 and 1 are
switched

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

312 0Tx order array

Reuse for prio

3

7654

Tx p. 7

Tx p. 4

Tx p. 6

Tx p. 5

First to
send

24 2Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

• high priority message assigned to
buffer 1

• this frame has to be inserted after all
high priority frames and before all
low/middle priority frames

• TX order tail for high and middle
priority class is moved to 2, low
priority frames are moved left, tail to
position 4 – no more space

• buffer 1 assigned priority 6 and
priorities for lower buffers moved left

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

312 0Tx order array

Reuse for prio

3

7654

Tx p. 7

Tx p. 4

Tx p. 6

Tx p. 5

First to
send

23 2Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

• middle priority messages is available in
FIFO class

• all HW buffers are full, the oldest
message of the lowest priority has to
be aborted

• buffer 2 is aborted

• low priority tail is moved right to
position 3

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Determining Correct Sequence – Example

High prio (2) –

Middle prio (1) –

Low prio (0) –

– SW queues/FIFOs 

TxB 3

TxB 2

TxB 1

TxB 0

311 2Tx order array

Reuse for prio

3

7654

Tx p. 7

Tx p. 5

Tx p. 6

Tx p. 4

First to
send

24 3Tx order tail
20 1 priority

Head prio 2
fixed

fixed

CAN controller
Tx buffers

To
bus
arbi-
trati-
on

• middle priority class is assigned to free
buffer 2

• this buffer is sorted between high and
low priority buffers

• middle priority tail is moved to 3, low
priority tail to 4

• buffer 2 is assigned priority 5, buffer 0
priority 4

• buffers with messages from high
priority class remains unchanged

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

Solution Requirements

• on upper layer (common CAN stack)

• support for multiple priority classes
• possibility to reschedule aborted frames for later
processing – stack should keep slots allocated until
transmission done

• on controller

• possibility to assign sending order to HW buffers
• possibility to abort HW buffer

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

Outline

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

Target Platform

• new full-featured CAN/CAN FD stack for RTEMS executive
• https://www.rtems.org/

• implemented as a character device driver, POSIX compliant
• tested with CTU CAN FD open source IP core

• provides precise timestamping with 10 ns resolution for
latencies measurements

• used hardware: educational kit
MicroZed APO based on MicroZed
evaluation kit with Xilinx
Zynq-7000 system on chip

• two CAN controllers used on the
board

• four HW transmission buffers on
each

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission

https://www.rtems.org/


Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

Test Framework

• controller A fully loading the CAN bus with 8-byte long
messages with 0x500 identifier – middle priority

• controller B accessed from two applications

• one sending messages with a 0x700 identifier – low
priority

• other sending 8-byte long messages with a 0x20 identifier
– high priority

• high priority messages send in burst of size four

• wait between bursts long enough to all frames to the bus

• write to receive latency measured with receive HW
timestamping at SOF bit

• test simulated fully loaded bus by one controller and
another controller trying to access this bus

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

Data
5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

5
0
0

next
arbitration

7
0
0

7
0
0

7
0
0

7
0
0

7
0
0

7
0
0

lost
arbitration

Controller B

Controller A

time

Data Data Data Data

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

lost
arbitration

5
0
0

5
0
0

next
arbitration

7
0
0

2
0

7
0
0

Controller B

Controller A

time

2
0

2
0

2
0

5
0
0

5
0
0

5
0
0

5
0
0

Data Data

Data Data Data Data

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Measured Latencies

0 100 200 300 400 500
Write-to-receive latency [us]

100

101

102

103

M
es

sa
ge

 C
ou

nt

CAN High Priority Message Latency Profile for 10,000 Messages in Burst of Size 4

First Message
Second Message
Third Message
Fourth Message

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Outline

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Conclusion

• presented algorithm can be used to ensure the correct
transmit order of various priority messages

• this is possible even if all controller’s HW buffers are used

• the solution is not hardware specific, it may be ported to more
controllers and systems

• we aim to contribute this solution and our new CAN/CAN FD
stack to RTEMS mainline in upcoming months

• development branch:
gitlab.fel.cvut.cz/otrees/rtems/rtems-canfd

• CAN bus CTU FEE Projects: see our CAN projects at
https://canbus.pages.fel.cvut.cz/

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission

https://canbus.pages.fel.cvut.cz/


Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

30 35 40 45 50 55 60 65
Latency [us]

100

101

102

103

104

M
es

sa
ge

 C
ou

nt

(unload latency profiles as dashed lines for comparison)

once
once-fd
flood
flood-fd

RTEMS CAN Stack Read to Write Latency Cumulative Histogram with Networking

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

Outline

1 Priority Inversion Problem
Introduction
Mapping Priority Classes to HW Buffers

2 Dynamic Allocation of TX Buffers to Multiple Priority Groups
Determining Correct Sequence
Determining Correct Sequence – Example
Solution Requirements

3 Results
Measured Latencies

4 Conclusion

5 References

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

References

CAN bus CTU FEE Projects:

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission



Priority Inversion Problem
Dynamic Allocation of TX Buffers to Multiple Priority Groups

Results
Conclusion
References

References

• CTU CAN FD, CAN for QEMU, CAN/CAN FD Latecy and RTEMS
CAN FD stack https://canbus.pages.fel.cvut.cz/

• Linux kernel CAN latencies daily testing
https://canbus.pages.fel.cvut.cz/can-latester/

• Pavel Ṕı̌sa, Jǐŕı Novák, Pavel Hronek, and Matěj Vasilevski.
Continuous CAN Bus Subsystem Latency Evaluation and Stress
Testing on GNU/Linux-Based Systems. embedded world Conference
2024. 2024.

• Priority inversion figure from: Federico Reghenzani, Giuseppe
Massari, and William Fornaciari. 2019. The Real-Time Linux Kernel:
A Survey on PREEMPT RT. ACM Comput. Surv. 52, 1, Article 18
(January 2020), 36 pages. https://doi.org/10.1145/3297714

CC-BY 2024: Michal Lenc, Pavel Ṕı̌sa Scheduling of CAN Message Transmission

https://doi.org/10.1145/3297714

	Priority Inversion Problem
	Introduction
	Mapping Priority Classes to HW Buffers

	Dynamic Allocation of TX Buffers to Multiple Priority Groups
	Determining Correct Sequence
	Determining Correct Sequence – Example
	Solution Requirements

	Results
	Measured Latencies

	Conclusion
	References

